20 аминокислот формулы и названия

Предлагаем вашему вниманию статью на тему: "20 аминокислот формулы и названия" от профессиональных спортсменов, их тренеров и врачей. Статья будет полезна как новичкам, так и опытным спортсменам. Все вопросы можно задать в комментариях или на странице контактов.

Многие из школьной программы биологии и химии что-то припоминают об аминокислотах, что-то слышали, но вся информация настолько скудна и довольно сложна, что приступая к занятиям в тренажерном зале, представление об органических соединениях весьма размыто.

Нельзя недооценивать значение аминокислот для организма человека, ведь по факту, это основные белковые молекулы, и по шкале важности мы бы поставили их на второе место. На первом- вода.

Существует две группы аминокислот – заменимые, самостоятельно вырабатываются организмом в процессе обмена веществ, и незаменимые – то есть такие, что синтезируются на основе других аминов или принимаются в готовом виде.

Всего выделяют 20 аминокислот с индивидуальными формулами. Среди них – 9 относят к незаменимым, и соответственно, 11 – заменимые купить аминокислоты.

Ниже мы подробно расскажем о каждой из 20 аминокислот, формулы и таблицы помогут вам получить подробные сведенья о важнейших органических соединениях в организме человека.

Среди незаменимых аминокислот выделяют:

  • Гистидин (His,H) – вещество входит в состав тканей организма, среди функций стоит отметить активное участие в выработке эритроцитов и лейкоцитов, обмене веществмежду тканями и центральной нервной системой. При недостаточном содержании гистидина ослабевает иммунная система, нарушается работа органов пищеварения, синтез желудочного сока. Запасы данных заменимых аминокислот быстро истощаются, а значит потребность организма в них постоянна.
  • Изолейцин (Ile,L)- основная из 20 самых важных аминокислот для спортсменов. Основная роль изолейцина – обеспечение выносливости, энергии и послетренировочного восстановления.
  • Лейцин (в таблице Leu,L) – способен превращаться в глюкозу, позволяет регулировать уровень сахара в крови, эффективно сжигать жировые накопления и замедлять процессы катаболизма. Мышечные волокна способны восстанавливаться именно благодаря лейцину.
  • Лизин (Lys,K)- главный специалист в борьбе с простудами и вирусами, активный участник синтеза антител и роста мышц, способствует обновлениям костной ткани. При достаточном количестве лизина в организме борьба с инфекциями проходит гораздо быстрее.
  • Метионин (Met,M) – помогает продуцировать таурин, глутатион и цистеин, креатин купить, с его помощью организм борется запасами жира, увеличивается выносливость и работоспособность мышц.
  • Фениланин( Phe,F)- принимают, чтобы улучшить работоспособность нервной системы, побороть мышечную боль, взбодриться и поднять настроение. Часто фениланин можно встретить в рецептах для борьбы с болезнью Паркинсона и даже шизофренией.
  • Треонин (таблица обозначает его как Thr,T)- незаменимый участник роста мышц, выработки коллагена и эластина. Без него невозможен белковый обмен, развитие мышечных волокон и работа иммунной и нервной систем.
  • Трипотофан (Trp,W) – «счастливая» аминокислота, отвечает в организме за синтез гормона счастья серотонина и метионина. Благотворно воздействует на сон, дыхательную систему и настроение человека.
  • Валинизвестен в таблице незаменимых аминокислот как Val,V)- чемпионпо важности для спортсменов. Его основные функции – восстановление организма после тренировки, обеспечение энергией, замедление катаболических процессов, нормализация работы мышц.
Читайте так же:  Лучшее спортивное питание для массы

К важнейшим заменимым аминокислотам относят:

  • Аланин (формула Ala,A) – играет важную роль для детоксикации печени,предотвращает распада мышечных тканей и заряжает энергией.
  • Аргинин (Arg,R)- активный участник работы печени, помогает восстанавливать организм после изнурительных нагрузок, укрепляет иммунную систему, ускоряет метаболизм, а так поддерживает тонус мышц и состояние кожи.
  • Аспарагин (в таблице Asn, N) и аспаргиновая кислота ( Asp, D) – неразрывно связаны, бок о бок трудятся в производстве аммиака, оказывают поддержку нервной системе и нормализируют обмен веществ.
  • Цистеин( Cys, C) – заслужено занимает место в 20 важных аминокислот, от него зависит состояние волосяных, ногтевых и кожных покровов.Кроме того, он разрушает раковые клетки и помогает при онкозаболеваниях.
  • Глютамин (формула в таблице GLN,Q) – помогает бороться с токсичными веществами в печени, способствует мышечному росту. Прием глютамина повышает выносливость и мощь, заряжает дополнительной энергией и поднимает настроение.
  • Пролин (Pro,P) — основной компонент коллагена, из которго строятся все тканевые волокна, помогает расщеплять белковые соединения для последующего использования организмом. Так же, пролин нормализирует артериальное давление, препятствует сердечнососудистым недугам.
  • Глицин(Gly,G) – нужен организму и спортсмену для выработки мышечных волокон и набору массы.
  • Серин (Ser,S) – нормализирует метаболические процессы в организме, укрепляет иммунную систему, участвует в синтезе гемоглобина и других важных для жизнедеятельности человека веществ.
  • Тирозин( Tyr,Y) – оказывает колоссальное значение на выносливость организма, стрессоустойчивость и восстановление. Благодаря этой аминокислоте происходите как физическое, так и моральное восстановление организма.

Как видите, для нормальной здоровой жизнедеятельности организму человека нужны в достаточном количестве 20 основных аминокислот, а запасы незаменимых аминов, особенно спортсменам, необходимо пополнять самостоятельно.

Ниже представлена таблица 20 важных аминокислот, формулы и сокращения, что помогут вам узнать, как с точки зрения химии, существуют данные соединения.

Мы надеемся, что информация, изложенная в этой статье, поможет Вам изнутри понять природу мышечного роста и достичь поставленных целей гораздо качественнее и быстрее.

Лекция №1

ТЕМА: «Аминокислоты».

План лекции:

1. Характеристика аминокислот

2. Пептиды.

  1. Характеристика аминокислот.

Аминокислоты – органические соединения, производные углеводородов, в молекулы которых входят карбоксильные и аминогруппы.

Читайте так же:  Глютамин и ВСаа как принимать

Белки состоят из остатков аминокислот, соединённых пептидными связями. Для анализа аминокислотного состава проводят гидролиз белка с последующим выделением аминокислот. Рассмотрим основные закономерности, характерные для аминокислот белков.

  • В настоящее время установлено, что в состав белков входят постоянно часто встречающийся набор аминокислот. Их 18. Кроме указанных, обнаружены ещё 2 амида аминокислот – аспарагин и глутамин. Все они получили название мажорных(часто встречающихся) аминокислот. Часто их образно называют«волшебными»аминокислотами. Кроме мажорных аминокислот, встречаются и редкие, те, которые не часто встречаются в составе природных белков. Их называютминорными.

  • Практически все аминокислоты белков относятся к α – аминокислотам(аминогруппа расположена у первого после карбоксильной группы атома углерода). Исходя из сказанного, для большинства аминокислот справедлива общая формула:

α

NH-CH-COOH

R

Где R– радикалы, имеющие различное строение.

Рассмотрим формулы белковых аминокислот, табл. 2.

20 аминокислот формулы и названия 83

20 аминокислот формулы и названия 169

  • Все α- аминокислоты, кроме аминоуксусной (глицина), имеют асимметрическийα- углеродный атом и существуют в виде двух энантиомеров. За редким исключением, природные аминокислоты относятся к L — ряду. Лишь в составе клеточных стенок бактерий и в антибиотиках обнаружены аминокислоты D генетического ряда. Значение угла вращения составляет 20-300градусов. Вращение может быть вправо (7 аминокислот) и влево (10 аминокислот).

COOH COOH

H―*―NH2 H2N―*―H

D- кофигурацияL-кофигурация

(природные аминокислоты)

  • В зависимости от преобладания амино- или карбоксильных групп, аминокислоты делят на 3 подкласса:

Кислые аминокислоты.Преобладают карбоксильные (кислотные) группы над аминогруппами (основными), например, аспарагиновая, глутаминовая кислоты.

Нейтральные аминокислотыКоличество групп равны. Глицин, аланин, и т. д.

Основные аминокислоты. Преобладают основные (аминогруппы) над карбоксильными (кислотными), например, лизин.

По физическим и ряду химических свойств аминокислоты резко отличаются от соответствующих кислот и оснований. Они лучше растворяются в воде, чем в органических растворителях; хорошо кристаллизуются; имеют высокую плотность и исключительно высокие температуры плавления. Эти свойства указывают на взаимодействие аминных и кислотных групп, вследствие чего аминокислоты в твёрдом состоянии и в растворе (в широком интервале pH) находятся в цвиттер-ионной форме (т.е. как внутренние соли). Взаимное влияние групп особенно ярко проявляется у α — аминокислот, где обе группы находятся в непосредственной близости.

H2N-CH2COOH ↔ H3N+-CH2COO-

цвиттер-ион

Цвиттер — ионная структура аминокислот подтверждается их большим дипольным моментом (не менее 5010-30Клм), а также полосой поглощения в ИК- спектре твердой аминокислоты или её раствора.

  • Аминокислоты способны вступать в реакции поликонденсации, приводящие к образованию полипептидов разной длины, которые и составляет первичную структуру белковой молекулы.
Читайте так же:  В синтезе белка участвует аминокислота
Видео (кликните для воспроизведения).

H2N–CH(R1)-COOH + H2N– CH(R2) – COOH → H2N – CH(R1) – CO-NH– CH(R2) – COOH

Дипептид

OH

║ │

Связь С – N– называетсяпептиднойсвязью.

Помимо рассмотренных выше 20 наиболее распространенных амино­кислот из гидролизатов некоторых специализированных белков выделены некоторые другие аминокислоты. Все они являются, как правило, производ­ными обычных аминокислот, т.е. модифицированными аминокислотами.

4-оксипролин, встречается в фибриллярном белке коллаге­не и некоторых растительных белках; 5-оксилизин найден в гидролизатах коллагена,десмозин иизодесмо­зин выделены из гидролизатов фибриллярного белка эластина. Похоже, что эти аминокислоты содержаться только в этом белке. Структура их необычна: 4-е молекулы лизина, соединенные своими R-группами, образуют замещенное пиридиновое кольцо. Возможно, что благодаря именно такой структуре эти аминокислоты могут образовывать 4-е радиально расходящиеся пептидные цепи. Результатом есть то, что эластин, в отличие от других фибриллярных белков, способен деформироваться (растягиваться) в двух взаимно перпен­дикулярных направлениях. И т.д.

Из перечисленных белковых аминокислот живые организмы синтезируют огромное количество разнообразнейших белковых соединений. Многие растения и бактерии могут синтезировать все необходимые им аминокислоты из простых неорганических соединений. В теле человека и животных примерно половина аминокислот также синтезируется Другая часть аминокислот может поступить в организм человека только с пищевыми белками.

— незаменимые аминокислоты— не синтезируются в организме человека, а поступают только с пищей. К незаменимым аминокислотам относят 8 аминокислот:валин, фенилаланин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.

— заменимые аминокислоты— могут синтезироваться в организме человека из других составляющих. К заменимым аминокислотам относят 12 аминокислот.

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет. Белки, в которых содержатся незаменимые аминокислоты, должны составлять в питании взрослых людей около 16-20% (20-30г при суточной норме белка 80-100г). В питании детей доля белка повышается до 30% — для школьников, и до 40% — для дошкольников. Это связано с тем, что детский организм постоянно растет и, поэтому, нуждается в большом количестве аминокислот как пластического материала для построения белков мышц, сосудов, нервной системы, кожи и всех других тканей и органов.

В наши дни быстрого питания и всеобщего увлечения фаст-фудом в рационе очень часто преобладают продукты с высоким содержанием легкоусваиваемых углеводов и жиров, а доля белковых продуктов заметно снижается. При недостатке в рационе каких — либо аминокислот или при голодании в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга. Организм человека может испытывать нехватку как незаменимых, так и заменимых аминокислот. Дефицит аминокислот, особенно незаменимых, приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям. Первыми «вестниками» нехватки аминокислот могут быть снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия. Такие проявления могут возникнуть у лиц, с целью снижения веса соблюдающих низкокалорийную несбалансированную диету с резким ограничением белковых продуктов.

Читайте так же:  Дозировка l карнитина для мужчин

Чаще других с проявлениями нехватки аминокислот, особенно незаменимых, сталкиваются вегетарианцы, намеренно избегающие включения в свой рацион полноценного животного белка.

Избыток аминокислот встречается в наши дни достаточно редко, но может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к развитию аневризмы аорты, заболеваниям суставов, ранней седине, тяжелым анемиям). В нормальных условиях функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевая кислота) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот быстро превращается в полезные компоненты и не успевает «нанести ущерб» организму. При несбалансированной диете возникает дефицит витаминов и микроэлементов, и избыток аминокислот может нарушить работу систем и органов. Такой вариант возможен при длительном соблюдении белковых или низкоуглеводных диет, а также при неконтролируемом приеме спортсменами протеиново-энергетических продуктов (аминокислотно-витаминные коктейли) для увеличения веса и развития мышц.

Содержание аминокислот в продуктах питания – очень важный показатель, он определяет биологическую ценность пищевого продукта, и отражает его способность удовлетворять потребность организма в незаменимых аминокислотах. Для ее определения используют методы оценки качества белка пищевых продуктов.

Среди химических методов наиболее распространен метод аминокислотного скора(scor — счет, подсчет). Он основан на сравнении аминокислотного состава белка оцениваемого продукта с аминокислотным составомстандартного (идеального) белка.После количественного определения химическим путем содержания каждой из незаменимых аминокислот в исследуемом белке определяют аминокислотный скор (АС) для каждой из них по формуле

АС = (mак.иссл/ mак.идеальн) • 100

Читайте так же:  L карнитин содержится в продуктах

mак.иссл- содержание незаменимой аминокислоты (в мг) в 1 г исследуемого белка.

mак.идеальн- содержание незаменимой аминокислоты (в мг) в 1 г стандартного (идеального) белка.

Аминокислотный образец ФАО/ВОЗ

аминокислота

содержание незаменимой аминокислоты (в мг) в 1 г идеального белка.

аминокислота

содержание незаменимой аминокислоты (в мг) в 1 г идеального белка.

Изолейцин

Фенилаланин + тирозин

Лейцин

Треонин

Лизин

Триптофан

Метионин + цистеин

Валин

Одновременно с определением аминокислотного скора выявляют лимитирующую для данного белка незаменимую аминокислоту, то естьту, для которой скор является наименьшим.
  1. Пептиды.

Две аминокислоты могут ковалентно соединяться посредством пептиднойсвязи с образованием дипептида.

20 аминокислот формулы и названия 89

Три аминокислоты могут соединяться посредством двух пептидных связей с образованием трипептида. Несколько аминокислот образуют олигопептиды, большое число аминокислот — полипептиды. Пептиды содержат только одну -аминогруппу и одну-карбоксильную группу. Эти группы могут быть ионизованы при определенных значениях рН. Подобно аминокислотам они имеют характеристические кривые титрования и изоэлектрические точки, при которых они не двигаются в электрическом поле.

Подобно другим органическим соединениям пептиды участвуют в химических реакциях, которые определяются наличием функциональных групп: свободной аминогруппой, свободной карбоксигруппой и R-группами. Пептидные связи подвержены гидролизу сильной кислотой (например, 6М НС1) или сильным основанием с образованием аминокислот. Гидролиз пептидных связей — это необходимый этап в определении аминокислотного состава белков. Пептидные связи могут быть разрушены действием ферментовпротеаз.

Многие пептиды, встречающиеся в природе, имеют биологическую активность при очень низких концентрациях.

Пептиды — потенциально активные фармацевтические препараты, есть три способаих получения:

1) выделение из органов и тканей;

2) генетическая инженерия;

3) прямой химический синтез.

В последнем случае высокие требования предъявляются к выходу продуктов на всех промежуточных стадиях.

Видео (кликните для воспроизведения).

Источники:

  1. Губа, В. П. Индивидуализация подготовки юных спортсменов / В.П. Губа, П.В. Квашук, В.Г. Никитушкин. — М.: Физкультура и спорт, 2014. — 280 c.
20 аминокислот формулы и названия
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here