Нарушение обмена аминокислот и белков

Предлагаем вашему вниманию статью на тему: "Нарушение обмена аминокислот и белков" от профессиональных спортсменов, их тренеров и врачей. Статья будет полезна как новичкам, так и опытным спортсменам. Все вопросы можно задать в комментариях или на странице контактов.

Обеспечение организма белками из нескольких источников определяет разнообразную этиологию нарушений белкового обмена.

Нарушения белкового обмена могут носить первичный или вторичный характер.

Одной из наиболее частых причин общих нарушений белкового обмена является количественная или качественная белковая недостаточность первичного (экзогенного) происхождения. Дефекты, связанные с этим, обусловлены ограничением поступления экзогенных белков при полном или частичном голодании, низкой биологической ценностью пищевых белков, дефицитом незаменимых аминокислот.

При некоторых заболеваниях нарушения белкового обмена могут развиваться в результате расстройства переваривания и всасывания белковых продуктов (при гастроэнтеритах, язвенном колите), повышенного распада белка в тканях (при стрессе, инфекционных болезнях), усиленной потери эндогенных белков (при кровопотерях, нефрозе, травмах), нарушения синтеза белка (при гепатитах). Следствием указанных нарушений часто является вторичная (эндогенная) белковая недостаточность с характерным отрицательным азотистым балансом.

При длительной белковой недостаточности резко нарушается биосинтез белков в различных органах, что ведет к патологическим изменениям обмена веществ в целом.

Белковая недостаточность может развиться и при достаточном поступлении белков с пищей, но при нарушении белкового обмена.

Она может быть обусловлена:

нарушением расщепления и всасывания белков в ЖКТ;

замедлением поступления аминокислот в органы и ткани;

нарушением биосинтеза белка;

нарушением промежуточного обмена аминокислот;

изменением скорости распада белка;

патологией образования конечных продуктов белкового обмена.

Нарушения расщепления и всасывания белков.

В пищеварительном тракте белки расщепляются под влиянием протеолитических ферментов. При этом, с одной стороны, белковые вещества и другие азотистые соединения, входящие в состав пищи, теряют свои специфические особенности, с другой стороны, из белков образуются аминокислоты, из нуклеиновых кислот — нуклеотиды и т.д. Образовавшиеся при переваривании пищи или находившиеся в ней азотсодержащие вещества с небольшой молекулярной массой подвергаются всасыванию.

Основные причины недостаточного расщепления белков заключаются в количественном уменьшении секреции соляной кислоты и ферментов, снижении активности протеолитических ферментов (пепсина, трипсина, химотрипсина) и связанном с этим недостаточным образованием аминокислот, уменьшении времени их воздействия (ускорение перистальтики). Так, при ослаблении секреции соляной кислоты снижается кислотность желудочного сока, что ведет к уменьшению набухания пищевых белков в желудке и ослаблению превращения пепсиногена в его активную форму — пепсин. В этих условиях часть белковых структур переходит из желудка в двенадцатиперстную кишку в неизмененном состоянии, что затрудняет действие трипсина, химотрипсина и других протеолитических ферментов кишечника.

Недостаточное образование свободных аминокислот из пищевых белков может происходить в случае ограничения поступления в кишечник сока поджелудочной железы (при панкреатите, закупорке протока). Недостаточность функции поджелудочной железы ведет к дефициту трипсина, химотрипсина и других протеаз, что снижает интенсивность полостного или пристеночного пищеварения.

Причинами нарушения всасывания аминокислот являются повреждение стенки тонкого кишечника (отек слизистой оболочки, воспаление) или неравномерное по времени всасывание отдельных аминокислот. Это ведет к нарушению (дисбалансу) соотношения аминокислот в крови и синтеза белка в целом, поскольку незаменимые аминокислоты должны поступать в организм в определенных количествах и соотношениях. Чаще всего имеет место нехватка метионина, триптофана, лизина и других аминокислот.

Помимо общих проявлений нарушения аминокислотного обмена, могут быть специфические нарушения, связанные с отсутствием конкретной аминокислоты. Так, недостаток лизина (особенно в развивающемся организме) задерживает рост и общее развитие, понижает содержание в крови гемоглобина и эритроцитов. При недостатке в организме триптофана возникает гипохромная анемия. Дефицит аргинина приводит к нарушению сперматогенеза, а гистидина — к развитию экземы, отставанию в росте, угнетению синтеза гемоглобина.

Замедление поступления аминокислот в органы и ткани.

Всосавшиеся из кишечника аминокислоты поступают непосредственно в кровь и частично в лимфатическую систему, представляя собой запас разнообразных азотистых веществ, которые затем участвуют во всех видах обмена. В норме аминокислоты, всосавшиеся в кровь из кишечника, быстро поглощаются печенью и частично другими органами (почками, сердцем, мышцами). Увеличение времени этой циркуляции указывает на нарушение способности тканей и органов (в первую очередь печени) поглощать аминокислоты.

Поскольку ряд аминокислот является исходным материалом при образовании биогенных аминов, задержка их в крови создает условия для накопления в тканях и крови соответствующих протеиногенных аминов и проявления их патогенного действия на различные органы и системы.

Нарушение синтеза белков.

Синтез белковых структур в организме является центральным звеном метаболизма белка. Даже небольшие нарушения специфичности биосинтеза белка могут вести к глубоким патологическим изменениям в организме.

Среди причин, вызывающих нарушения синтеза белка, важное место занимают различные виды алиментарной недостаточности (полное, неполное голодание, отсутствие в пище незаменимых аминокислот, нарушение количественных соотношений между незаменимыми аминокислотами, поступающими в организм). При отсутствии в клетках хотя бы одной из 20 незаменимых аминокислот прекращается синтез белка в целом.

Читайте так же:  Глютамин от тяги к сладкому

Нарушение скорости синтеза белков может быть обусловлено расстройством функции соответствующих генетических структур, на которых происходит этот синтез. Нарушение синтеза белка могут вызывать некоторые антибиотики. Так, ошибки в считывании генетического кода могут возникнуть под влиянием стрептомицина, неомицина и некоторых других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи. Митомицин угнетает синтез белка за счет алкилирования ДНК (образование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.

Одной из важных причин, вызывающих нарушение синтеза белков, может явиться нарушение регуляции этого процесса. Интенсивность и направленность белкового обмена регулируют нервная и эндокринная системы, действие которых заключается, вероятно, в их влиянии на различные ферментные системы.

При поражении печени и почек, некоторых острых и хронических воспалительных процессах (ревматизме, инфекционном миокардите, пневмонии) в организме начинают синтезироваться особые белки с измененными свойствами или несвойственные норме. Классическим примером болезней, вызванных наличием патологических белков, являются болезни, связанные с присутствием патологического гемоглобина (гемоглобинозы), нарушения свертывания крови при появлении патологических фибриногенов. К необычным белкам крови относятся криоглобулины, способные выпадать в осадок при температуре ниже 37 °С, что ведет к тромбообразованию. Появление их сопровождает нефроз, цирроз печени и другие заболевания.

Патология промежуточного белкового обмена (нарушение обмена аминокислот).

Центральное место в промежуточном обмене белков занимает реакция трансаминирования, как основной источник образования новых аминокислот.

Нарушение трансаминирования может возникнуть в результате недостаточности в организме витамина В6. Это объясняется тем, что пиридоксальфосфат является коферментом аминотрансфераз — специфических ферментов трансаминирования между амино- и кетокислотами. Беременность, длительный прием сульфаниламидов тормозят синтез витамина В6 и могут послужить причиной нарушения обмена аминокислот.

Патологическое усиление реакции трансаминирования возможно в условиях повреждения печени и инсулиновой недостаточности, когда значительно увеличивается содержание свободных аминокислот. [1]

Процессы трансаминирования аминокислот тесно связаны с процессами окислительного дезаминирования, в ходе которого происходит ферментативное отщепление аммиака от аминокислот. Дезаминирование определяет образование конечных продуктов белкового обмена и вступление аминокислот в энергетический обмен. Ослабление дезаминирования может возникнуть вследствие нарушения окислительных процессов в тканях. Вследствие нарушения окислительного дезаминирования аминокислот происходит ослабление мочевинообразования, повышение концентрации аминокислот и увеличение выведения их с мочой (аминоацидурия).

Промежуточный обмен ряда аминокислот совершается не только в форме переаминирования и окислительного дезаминирования, но и путем их декарбоксилирования (потеря СO2 из карбоксильной группы) с образованием соответствующих аминов, получивших название «биогенные амины». Так, при декарбоксилировании гистидина образуется гистамин, тирозина — тирамин, 5-гидрокситриптофана — серотонин и т.д. Все эти амины биологически активны и оказывают выраженное фармакологическое действие на сосуды. Если в норме они образуются в малых количествах и довольно быстро разрушаются, то при нарушении декарбоксилирования складываются условия для накопления в тканях и крови соответствующих аминов и проявления их токсического действия. Причиной нарушения процесса декарбоксилирования может служить усиление активности декарбоксилазы.

Изменение скорости распада белка.

Белки организма постоянно находятся в динамическом состоянии: в процессе непрерывного распада и биосинтеза. Нарушение условий, необходимых для реализации этого равновесия, также может привести к развитию обшей белковой недостаточности.

Значительное увеличение скорости распада белков тканей и крови наблюдается при повышении температуры организма, обширных воспалительных процессах, тяжелых травмах, гипоксии, злокачественных опухолях, что связано либо с действием бактериальных токсинов (в случае инфицирования), либо со значительным увеличением активности протеолитических ферментов крови (при гипоксии), либо токсическим действием продуктов распада тканей (при травмах). В большинстве случаев ускорение распада белков сопровождается развитием в организме отрицательного азотистого баланса в связи с преобладанием процессов распада белков над их биосинтезом.

Патология конечного этапа белкового обмена.

Основными конечными продуктами белкового обмена являются аммиак и мочевина. Патология конечного этапа белкового обмена может проявляться нарушением образования конечных продуктов либо нарушением их выведения.

Связывание аммиака в тканях организма имеет большое физиологическое значение, так как аммиак обладает токсическим эффектом прежде всего в отношении центральной нервной системы, вызывая ее резкое возбуждение. Связывание и обезвреживание аммиака осуществляется при помощи двух механизмов: в печени — путем образования мочевины, а в других тканях — путем присоединения аммиака к глутаминовой кислоте (посредством аминирования) с образованием глутамина.

Читайте так же:  Определите последовательность аминокислот в полипептиде

Основным механизмом связывания аммиака является процесс образования мочевины в орнитиновом цикле.

Нарушения образования мочевины могут наступить в результате снижения активности ферментных систем, участвующих в этом процессе (при гепатитах, циррозе печени), обшей белковой недостаточности.

В основе нарушения образования мочевины могут лежать наследственные дефекты активности ферментов.

В других органах и тканях (мышцы, нервная ткань) аммиак связывается в реакции амидирования с присоединением к карбоксильной группе свободных дикарбоновых аминокислот. Главным субстратом служит глутаминовая кислота. Нарушение процесса амидирования может происходить при снижении активности ферментных систем, обеспечивающих реакцию (глутаминаза), или в результате интенсивного образования аммиака в количествах, превосходящих возможности его связывания.

Другим конечным продуктом белкового обмена, образующимся при окислении креатина (азотистое вещество мышц), является креатинин. [2]

Креатинурия — повышение уровня креатинина в моче — наблюдается у беременных женщин и у детей в период интенсивного роста.

При голодании, авитаминозе Е, лихорадочных инфекционных заболеваниях, тиреотоксикозе и других заболеваниях, при которых наблюдаются нарушения обмена в мышцах, креатинурия свидетельствует о нарушении креатинового обмена.

Белки — наиболее важные биологические вещества живых организмов. Они служат основным пластическим материалом, из которого строятся клетки, ткани и органы тела человека. Белки составляют основу гормонов, ферментов, антител и других образований, выполняющих сложные функции в жизни человека (пищеварение, рост, размножение, иммунитет и др.), способствуют нормальному обмену в организме витаминов и минеральных солей. Белки участвуют в образовании энергии, особенно в период больших энергетических затрат или при недостаточном количестве в питании углеводов и жиров. Энергетическая ценность 1 г белка составляет 4 ккал (16,7 кДж).
При недостатке белков в организме возникают серьезные нарушения: замедление роста и развития детей, изменения в печени взрослых, деятельности желез внутренней секреции, состава крови, ослабление умственной деятельности, снижение работоспособности и сопротивляемости к инфекционным заболеваниям.

Поскольку белки занимают центральное положение в осуществлении процессов жизнедеятельности организма, то и нарушения белкового обмена в различных вариантах являются компонентами патогенеза всех без исключения патологических процессов. Для получения полного представления о нарушениях белкового обмена, исходят из понятия об азотистом равновесии. У нормального взрослого человека количество азотистых веществ, выводимых из организма, равняется тому, которое он получает с пищей. В растущем организме, при беременности, при введении или избыточной выработке гормонов анаболического действия, при откармливании после истощающих заболеваний азота выводится меньше, чем поступает, т. е. анаболические процессы преобладают над катаболическими (положительный азотистый баланс). Отрицательный азотистый баланс имеет место при потере белков или большом расходе их организмом. Это может быть при голодании, потере белков через почки (протеинурия), кожу (ожоги), кишки (понос), при тиреотоксикозе, инфекционной лихорадке.

Видео удалено.
Видео (кликните для воспроизведения).

Нарушения белкового обмена возможны на всех этапах, начиная с всасывания и кончая выведением из организма конечных продуктов обмена. В такой последовательности эти нарушения будут рассмотрены ниже.

I. Нарушения всасывания и синтеза белков

Поскольку в организме практически нет депо белков, а источником аминокислот для их синтеза служат в основном компоненты пищи, то, естественно, при нарушении переваривания и всасывания белков развивается алиментарная белковая недостаточность. Наблюдается она при воспалительных и дистрофических изменениях различных отделов кишок, сопровождающихся нарушением их секреторной и моторной функций, при голодании, несбалансированном по аминокислотному составу пищи.

Однако для нормального синтеза белков необходимо не только достаточное количество аминокислот, но и правильное и активное функционирование системы этого синтеза и кодирующих его генетических структур. Нарушение продукции белка может быть приобретенным и наследственным. Оно выражается в изменении количества синтезированных молекул или появлении молекул с измененной структурой.

Увеличение или уменьшение количества синтезируемого белка чаще всего связано с изменением регуляторных влияний со стороны ряда гормонов, нервов и иммунной системы. Кроме того, к нарушению протеосинтеза может приводить конденсация хроматина при различных патологических процессах в клетках, нерегулируемая скорость списывания матричной РНК при нарушении функционирования гена — регулятора или оператора (в опухолевых клетках), а также дефекты в структуре рибосом, возникающие, например, под влиянием стрептомицина.

Читайте так же:  Витамин д в каплях взрослым

Синтез белков с измененной структурой обычно бывает следствием ошибок в геноме. Это может проявляться нарушением аминокислотного состава белковой молекулы (например, молекула гемоглобина при серповидно-клеточной анемии), укорочением молекул (когда транскрипция информации с ДНК-матрицы идет только до дефекта в ней), а также синтезом аномально длинных белков, если мутация произошла в «стоп-сигнале» гена и терминирующий кодон исчез. Примером этого может служить появление удлиненных альфа-цепей гемоглобина. Продукция белков с измененной структурой может быть также следствием нарушения одного из звеньев белоксинтезирующей системы — аппарата трансляции либо посттрансляционной модификации молекул. С увеличением частоты ошибок трансляции в процессе жизни связывают старение организма.

II. Нарушения обмена аминокислот

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов и всех аминокислот: трансаминирование приводит к образованию аминокислот, дезаминирование — к их разрушению.

Сущность реакции трансаминирования заключается в обратимом переносе аминогруппы от аминокислоты на а-кетокислоту без промежуточного образования свободного аммиака. Реакция катализируется специфическими ферментами: аминотрансферазами или трансаминазами, кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридок-саминофосфат).

Нарушения реакции трансаминирования могут возникать по нескольким причинам: это прежде всего недостаточность пиридоксина (беременность, подавление сульфаниламидными препаратами кишечной флоры, частично синтезирующей витамин, торможение синтеза пиридоксальфосфата во время лечения фтивазидом). Снижение активности трансаминаз происходит также при ограничении синтеза белков (голодание, тяжелые заболевания печени). Если в отдельных органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение их активности в крови при данной патологии является одним из диагностических тестов. В изменении скорости трансаминирования существенная роль принадлежит нарушению соотношения между субстратами реакции, а также гормонам, особенно гликокортикоидам и гормону щитовидной железы, оказывающим стимулирующее влияние на этот процесс.

Угнетение окислительного дезаминирования, приводящее к накоплению неиспользованных аминокислот, может вызвать повышение концентрации аминокислот в крови — гипераминоацидемию. Следствием этого является усиленная экскреция аминокислот почками (аминоацидурия) и изменение соотношения отдельных аминокислот в крови, создающие неблагоприятные условия для синтеза белковых структур. Нарушение дезаминирования возникает при недостатке компонентов, прямо или косвенно участвующих в этой реакции (недостаток пиридоксина, рибофлавина, никотиновой кислоты; гипоксия; белковая недостаточность при голодании).

Нарушения декарбоксилирования. Являясь очень важным, хотя и не универсальным, направлением белкового обмена, декарбоксилирование протекает с образованием CO2 и биогенных аминов. Декарбоксилированию подвергаются только некоторые аминокислоты: гистидин — с образованием гистамина, тирозин — тирамина, 1-глутаминовая кислота — γ-аминомасляной кислоты, 5-гидрокситриптофан — серотонина, производные тирозина (3,4-диоксифенилаланин) и цистина (1-цистеиновая кислота) — соответственно 3,4-диоксифенилэтиламина (дофамин) и таурина.

Биогенные амины, как известно, обладают специфической биологической активностью и увеличение их количества может вызвать ряд патологических явлений в организме. Причиной такого увеличения может быть не только усиление декарбоксилирования соответствующих аминокислот, но и угнетение окисления аминов и нарушение их связывания белками. Так, например, при гипоксических состояниях, ишемии и деструкции тканей (травмы, облучение и др.) ослабляются окислительные процессы, что способствует усилению декарбоксилирования. Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительное нарушение местного кровообращения, повышение проницаемости сосудов и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот. Прохождение аминокислот через определенные метаболические пути детерминируется наличием и активностью соответствующих ферментов. Наследственное нарушение синтеза ферментов приводит к тому, что соответствующая аминокислота не включается в метаболизм, а накапливается в организме и появляется в биологических средах: моче, кале, поте, цереброспинальной жидкости. Клиническая картина такого заболевания определяется, во-первых, появлением слишком большого количества вещества, которое должно было метаболизироваться при участии заблокированного фермента, а во-вторых, дефицитом вещества, которое должно было образоваться.

Нарушения обмена фенилаланина. Фенилаланин в норме необратимо окисляется в тирозин. Если же в печени нарушается синтез необходимого для этого фермента фенилаланингидроксилазы, то окисление фенилаланина идет по пути образования фенилпировиноградной и фенилмолочной кислот — развивается фенилкетонурия. Однако этот путь обладает малой пропускной способностью и поэтому фенилаланин накапливается в большом количестве в крови, тканях и цереброспинальной жидкости, что в первые же месяцы жизни ведет к тяжелому поражению центральной нервной системы и неизлечимому слабоумию. Из-за недостаточного синтеза тирозина снижается образование меланина, что обусловливает посветление кожи и волос. Кроме того, при увеличенной выработке фенилпировиноградной кислоты тормозится активность фермента (дофамингидроксилазы), необходимого для образования катехоламинов (адреналина, норадреналина). Поэтому тяжесть наследственного заболевания определяется комплексом всех этих нарушений.

Читайте так же:  Л карнитин кристалл 2500 как принимать

Установить болезнь можно с помощью следующей пробы: при добавлении к свежей моче нескольких капель 5% раствора трихлоруксусного железа появляется оливково-зеленая окраска. Больные погибают в детстве, если не проводится специальное лечение, которое заключается в постоянном, но осторожном (контроль за аминокислотным составом крови) ограничении поступления фенилаланина с пищей.

Нарушения обмена тирозина. Обмен тирозина осуществляется несколькими путями. При недостаточном превращении образовавшейся из тирозина парагидроксифенилпировиноградной кислоты в гомогентизиновую первая, а также тирозин выделяются с мочой. Это нарушение носит название тирозиноза. Если же задержка окисления тирозина происходит в момент превращения гомогентизиновой кислоты в малеилацетоуксусную, развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (оксидаза гомогентизиновой кислоты), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота «не успевает» появиться в крови, а если и появляется, то быстро выводится почками. При наследственном дефекте этого фермента гомогентизиновая кислота в большом количестве обнаруживается в крови и моче. Моча при стоянии на воздухе, а также при добавлении к ней щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона («захватывающий щелочь»). Гомогентизиновая кислота из крови проникает в ткани — хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего появляются темные пятна в области ушей, носа, щек, на склерах. Иногда развиваются тяжелые изменения в суставах.

Тирозин, кроме того, является исходным продуктом для образования красящего вещества кожи и волос — меланина. Если превращение тирозина в меланин уменьшено из-за наследственной недостаточности тирозиназы), возникает альбинизм.

Наконец, тирозин является предшественником тироксина. При недостаточном синтезе фермента, катализирующего процесс йодирования тирозина свободным йодом, нарушается образование гормонов щитовидной железы.

Нарушения обмена триптофана. Основной путь метаболизма триптофана приводит к синтезу амида никотиновой кислоты, который играет очень важную роль в жизнедеятельности организма, являясь простетической группой ряда окислительных ферментов — никотинамидадениндинук-леотида (НАД) и его восстановленной формы никотинамидаденин-динуклеотидфосфата (НАДФ). Поэтому при недостаточности никотиновой кислоты и ее амида нарушаются многие обменные реакции, а при значительном дефиците этих веществ развивается пеллагра.

Нарушение обмена триптофана может проявиться также в изменении количества образующегося из него серотонина.

III. Нарушения конечных этапов белкового обмена

Патофизиология конечных этапов белкового обмена включает в себя патологию процессов образования азотистых продуктов (мочевина, аммиак, мочевая кислота) и выведения их из организма. Основным показателем нарушения образования и выделения мочевины и других азотистых продуктов обмена является изменение содержания и состава остаточного (небелкового) азота в крови (норма — 20 — 30 мг%). Остаточный азот на 50% состоит из азота мочевины, около 25% его приходится на долю аминокислот, остальная часть — на другие азотистые продукты. Немочевинная часть его получила название резидуального азота. Увеличение остаточного азота в крови — гиперазотемия — может быть следствием нарушения образования мочевины в печени (продукционная, или печеночная, гиперазотемия) и нарушения выделительной функции почек (ретенционная, или почечная, гиперазотемия).

Нарушения образования мочевины наблюдаются при ряде заболеваний (дистрофические изменения в печени, гипоксия), а также могут быть наследственно обусловленным дефектом. Наследственные нарушения мочевинообразования проявляются при недостаточном синтезе аргинин-сукцинатлиазы (аргининсукцинатурия), карбамоилфосфатсинтетазы и орнитинкарбамоилтрансферазы (аммонийемия) и аргининсукцинат-синтетазы (цитруллинурия).

Наиболее частым следствием нарушения синтеза мочевины является накопление аммиака в крови. Количество его может увеличиваться при резко выраженном нарушении выделительной функции почек. Токсическое действие аммиака обусловлено прежде всего его влиянием на центральную нервную систему. Оно может быть прямым и опосредованным. Последнее заключается в усиленном обезвреживании аммиака вследствие связывания его глутаминовой кислотой. Выключение вследствие этого глутаминовой кислоты из обмена проявляется ускорением переаминирования аминокислот с а-кетоглутаровой кислотой, которая тем самым отвлекается от участия в цикле трикарбоновых кислот (цикл Кребса). Торможение цикла Кребса приводит к задержке утилизации ацетил-СоА, который, превращаясь в кетоновые тела, способствует развитию коматозного состояния.

Нарушения образования и выделения мочевой кислоты. Мочевая кислота — это конечный продукт обмена пуриновых оснований, входящих в структуру нуклеиновых кислот. Нарушения образования и выделения мочевой кислоты могут наблюдаться при заболеваниях почек, при лейкозах. Однако наиболее ярко эти нарушения проявляются при подагре.

Читайте так же:  Как принимать креатин до тренировки?

Подагра была известна еще в древнем мире и описана Гиппократом. Изучение заболевания началось в 1860 г., когда Гаррод, сам страдавший подагрой, дал ее классическое описание и обнаружил в крови у больных увеличение содержания мочевой кислоты (гиперурикемия). К подагре существует предрасположение в виде доминантно наследуемого повышения уровня мочевой кислоты в крови и, возможно, изменения факторов, поддерживающих мочевую кислоту в растворенном состоянии. Факторами риска возникновения подагры могут быть избыточное поступление пуринов в организм (употребление в пищу большого количества мяса, особенно с вином и пивом); избыточное поступление в организм молибдена, который входит в состав ксантиноксидазы, переводящей ксантин в гипоксантин, который затем превращается в мочевую кислоту; пол (чаще болеют мужчины); пожилой возраст, для которого характерна возрастная гиперурикемия.

Механизм повышения уровня мочевой кислоты в крови у больных не совсем ясен. Определенная роль в этом отводится как нарушению выделения мочекислых соединений почками, так и усиленному образованию их из глицерина и других предшественников.

Гиперурикемия может сопровождаться отложением солей мочевой кислоты в суставах и хрящах, где в силу слабого кровоснабжения всегда имеется тенденция к закислению среды, что способствует выпадению солей в осадок (особенно при дефекте факторов, поддерживающих их в растворенном состоянии). Отложение солей вызывает острое подагрическое воспаление, сопровождающееся болью, лихорадкой, а также аллергическими проявлениями и заканчивающееся образованием подагрических узлов и деформацией суставов.

IV. Нарушения белкового состава крови

Изменения в количественном и качественном соотношении белков крови наблюдаются почти при всех патологических состояниях, которые поражают организм в целом, а также при врожденных аномалиях синтеза белков. Нарушение содержания белков плазмы крови может выражаться изменением общего количества белков (гипопротеинемия, гиперпротеинемия) или соотношения между отдельными белковыми фракциями (диспротеинемия) при нормальном общем содержании белков.

Гипопротеинемия возникает главным образом за счет снижения количества альбуминов и может быть приобретенной (при голодании, заболеваниях печени, нарушении всасывания белков) и наследственной. К гипопротеинемии может привести также выход белков из кровеносного русла (кровопотеря, плазмопотеря, экссудация, транссудация) и потеря белков с мочой (протеинурия).

Гиперпротеинемия чаще бывает относительной (сгущение крови). Абсолютная гиперпротеинемия обычно связана с гиперглобулинемией, как правило, с увеличением уровня у-глобулинов (как компенсаторная реакция при пониженном содержании альбуминов в крови, усилении синтеза антител).

Диспротеинемии имеют как приобретенный, так и наследственный характер. Условно они делятся на дисглобулинемии, дисгаммаглобулинемии и дисиммунноглобулинемии. При последних белковый состав крови является лишь отражением общей перестройки в иммунной системе, включающей и клеточную реакцию.

Примерами наиболее часто встречающихся диспротеинемии могут служить увеличение содержания α2-глобулинов, уменьшение α- и β-липопротеидов при нарушениях функций печени, изменение количества и структуры фибриногена. Последнее имеет большое практическое значение.

Изменения γ-глобулинов могут быть количественными и качественными. Количественно измененные γ-глобулины называются парапротеинами. Они относятся к иммуноглобулинам и являются обычно продуктами единичных клонов антителопродуцирующих клеток. Увеличение их количества в крови называется моноклональными гипергаммаглобулинемиями и наблюдается обычно при пролиферации соответствующих клонов, чаще всего обусловленной опухолевой природой патологического процесса (миеломная болезнь, макроглобулинемия Вальденстрема). Разновидностью парапротеинов являются также криоглобулины — патологические протеины с особенностями иммуноглобулинов, которые преципитируют при охлаждении.

Терапевт

Семейный доктор

Диетолог

Карта симптомов предназначена исключительно для образовательных целей. Не занимайтесь самолечением; по всем вопросам, касающимся определения заболевания и способов его лечения, обращайтесь к врачу. EUROLAB не несет ответственности за последствия, вызванные использованием размещенной на портале информации.

Видео удалено.
Видео (кликните для воспроизведения).

Источники:

  1. Муллаева, Н. Б. Конспекты-сценарии занятий по физической культуре для дошкольников / Н.Б. Муллаева. — М.: Детство-Пресс, 2018. — 160 c.
  2. Ахманов, М. Диабет в пожилом возрасте / М. Ахманов. — М.: Вектор, 2012. — 220 c.
Нарушение обмена аминокислот и белков
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here