Полимеры мономерами которых являются аминокислоты

Предлагаем вашему вниманию статью на тему: "Полимеры мономерами которых являются аминокислоты" от профессиональных спортсменов, их тренеров и врачей. Статья будет полезна как новичкам, так и опытным спортсменам. Все вопросы можно задать в комментариях или на странице контактов.

Белки – сложные биополимеры, мономерами которых являются -аминокислоты. В составе белков в организме человека встречаются только 20-аминокислот. Индивидуальность белков определяется порядком чередования аминокислот в белке. Белки это важнейший класс биологических соединений. Они играют ключевую роль в клетке, присутствуют в виде главных компонентов в любых формах живой материи, поэтому по-прежнему неопровержимо определение Ф.Энгельса, что «жизнь есть способ существования белковых тел». Белки чрезвычайно разнообразны по структуре и выполняют многочисленные биологические функции. Так в одном организме Escherichia сolli содержится более 3000 различных белков.

Название белки получили от яичного белка, который с незапамятных времен использовался в пищу.

Молекулярная масса белков варьирует от 5000 до 1млн и более. Белками являются ферменты, гормоны, антибиотики, токсины. Белки выполняют разнообразные функции: каталитические (ферменты), двигательные (актин, миозин) транспортные (гемоглобин, миоглобин, цитохромы), защитные (иммуноглобулины, антигены, фибриноген), рецепторные (родопсин), регуляторные (гистоны, репрессоры,) запасающие (казеин, овальбумин) Энергетическую функцию выполняют запасающие белки или иные в условиях длительного голодания или интенсивной длительной работы мышц.

Сравнительно небольшие молекулы с массой до 5000 называют пептидами, к ни относят некоторые гормоны (вазопрессин, адренокортикотропный гормон), глюкагон, нейропептиды мозга (эндорфин), пептиды сна, памяти, и т.п., алкалоиды (эрготамин) антибиотики (грамицидин)

I. -Аминокислоты

-Аминокислоты – гетерофункциональные соединения, молекулы которых содержат карбоксильную и аминогруппу у одного и того же атома углерода. В большинстве АК, этот атом углерода — хиральный центр. В АК, которые являются мономерами белков, он имеет относительную — L конфигурацию. Конфигурация определяется по первому хиральному атому (-углерод).

Полимеры мономерами которых являются аминокислоты 19

Все -АК имеют общий фрагмент или “стандартный блок” и отличаются радикалом у -углеродного атома. Отсутствует радикал только у глицина, у него вместо радикала атом водорода. [1]

NH2 – СН – СООН

R

1. Номенклатура аминокислот и их классификация и по строению радикалов

Названия для АК применяют преимущественно тривиальные (глицин от слова сладкий –glykos, серин от слова serieum – шелковистый, получен из фибрина шелка), для записи используют их трехбуквенное обозначение. В составе полипептидной цепочки остаток АК, не имеющий карбоксильной группы в стандартном блоке называется с изменением окончания –ИН на –ИЛ. Например, глицил вместо глицин и т.д.

По строению углеродного скелета радикалов АК делятся на алифатические, ароматические и гетероциклические. В составе радикалов могут быть функциональные группы, придающие им специфические свойства: карбоксильная, амино-, тиольная, амидная, гидроксильная, гуанидиновая. Сами АК все в воде растворимы, но в составе белка свойства радикала оказывают влияние на растворимость белка в воде, поэтому АК с гидрофобными неполярными радикалами формируют нерастворимые белки (коллаген), АК с гидрофильными полярными радикалами формируют растворимые в воде белки (альбумины). Гидрофобные радикалы это углеводородные структуры, которые способны «склеиваться» друг с другом образуя гидрофобные связи, но не образуют водородные связи с водой и поэтому не растворяются в ней. К ним относятся радикалы с неполярными связями (углеводородные радикалы). Гидрофильные радикалы имеют полярные связи и образуют диполь-дипольные или водородные связи водой. Гидрофобные и гидрофильные радикалы АК определяют пространственное строение белка, в который они входят.

Среди полярных радикалов также выделяют с зарядом (положительно и отрицательно заряженные), они лучше растворяются в воде и незаряженные, они растворяются в воде хуже.

Таблица. Строение аминокислот – мономеров белка

1.АК с алифатическими углеводородными радикалами (гидрофобные)

Глицин

Полимеры мономерами которых являются аминокислоты 30

Аланин

Полимеры мономерами которых являются аминокислоты 79

Валин

Полимеры мономерами которых являются аминокислоты 35

Лейцин

Полимеры мономерами которых являются аминокислоты 128

Изолейцин

Полимеры мономерами которых являются аминокислоты 47

2. АК с ароматическими углеводородными радикалами (гидрофобные)

Фенилаланин

Полимеры мономерами которых являются аминокислоты 70

3. АК с гидроксильными группами (гидрофильные)

Серин

Полимеры мономерами которых являются аминокислоты 126

Треонин

Полимеры мономерами которых являются аминокислоты 92

Тирозин

Полимеры мономерами которых являются аминокислоты 48

4. АК с серосодержашими радикалами (гидрофильные)

Цистеин

Полимеры мономерами которых являются аминокислоты 146

Метионин

Полимеры мономерами которых являются аминокислоты 192

5. АК с карбоксильной группой в радикале (гидрофильные отрицательно заряженные)

Аспарагиновая кислота

Полимеры мономерами которых являются аминокислоты 55

Глутаминовая кислота

Полимеры мономерами которых являются аминокислоты 142

6. АК, содержащие амидные группы (гидрофильные)

Аспарагин

Полимеры мономерами которых являются аминокислоты 26

Глутамин

Полимеры мономерами которых являются аминокислоты 175

7. АК, содержащие аминогруппу в радикале (гидрофильные, положительно заряженные)

Лизин

Полимеры мономерами которых являются аминокислоты 68

8. АК, содержащие гуанидиновую группу (гидрофильные, положительно заряженные

Аргинин

Полимеры мономерами которых являются аминокислоты 42

9. АК с гетероциклическими радикалами

Триптофан (гидрофобный)

Полимеры мономерами которых являются аминокислоты 66

Гистидин (гидрофильный, + заряженный)

Полимеры мономерами которых являются аминокислоты 13

Пролин (гидрофобный)

Полимеры мономерами которых являются аминокислоты 50

Белки – сложные биополимеры, мономерами которых являются -аминокислоты. В составе белков в организме человека встречаются только 20-аминокислот. Индивидуальность белков определяется порядком чередования аминокислот в белке. Белки это важнейший класс биологических соединений. Они играют ключевую роль в клетке, присутствуют в виде главных компонентов в любых формах живой материи, поэтому по-прежнему неопровержимо определение Ф.Энгельса, что «жизнь есть способ существования белковых тел». Белки чрезвычайно разнообразны по структуре и выполняют многочисленные биологические функции. Так в одном организме Escherichia сolli содержится более 3000 различных белков.

Название белки получили от яичного белка, который с незапамятных времен использовался в пищу.

Молекулярная масса белков варьирует от 5000 до 1млн и более. Белками являются ферменты, гормоны, антибиотики, токсины. Белки выполняют разнообразные функции: каталитические (ферменты), двигательные (актин, миозин) транспортные (гемоглобин, миоглобин, цитохромы), защитные (иммуноглобулины, антигены, фибриноген), рецепторные (родопсин), регуляторные (гистоны, репрессоры,) запасающие (казеин, овальбумин) Энергетическую функцию выполняют запасающие белки или иные в условиях длительного голодания или интенсивной длительной работы мышц.

Сравнительно небольшие молекулы с массой до 5000 называют пептидами, к ни относят некоторые гормоны (вазопрессин, адренокортикотропный гормон), глюкагон, нейропептиды мозга (эндорфин), пептиды сна, памяти, и т.п., алкалоиды (эрготамин) антибиотики (грамицидин)

I. -Аминокислоты

-Аминокислоты – гетерофункциональные соединения, молекулы которых содержат карбоксильную и аминогруппу у одного и того же атома углерода. В большинстве АК, этот атом углерода — хиральный центр. В АК, которые являются мономерами белков, он имеет относительную — L конфигурацию. Конфигурация определяется по первому хиральному атому (-углерод).

Полимеры мономерами которых являются аминокислоты 19

Все -АК имеют общий фрагмент или “стандартный блок” и отличаются радикалом у -углеродного атома. Отсутствует радикал только у глицина, у него вместо радикала атом водорода. [1]

NH2 – СН – СООН

R

1. Номенклатура аминокислот и их классификация и по строению радикалов

Названия для АК применяют преимущественно тривиальные (глицин от слова сладкий –glykos, серин от слова serieum – шелковистый, получен из фибрина шелка), для записи используют их трехбуквенное обозначение. В составе полипептидной цепочки остаток АК, не имеющий карбоксильной группы в стандартном блоке называется с изменением окончания –ИН на –ИЛ. Например, глицил вместо глицин и т.д.

По строению углеродного скелета радикалов АК делятся на алифатические, ароматические и гетероциклические. В составе радикалов могут быть функциональные группы, придающие им специфические свойства: карбоксильная, амино-, тиольная, амидная, гидроксильная, гуанидиновая. Сами АК все в воде растворимы, но в составе белка свойства радикала оказывают влияние на растворимость белка в воде, поэтому АК с гидрофобными неполярными радикалами формируют нерастворимые белки (коллаген), АК с гидрофильными полярными радикалами формируют растворимые в воде белки (альбумины). Гидрофобные радикалы это углеводородные структуры, которые способны «склеиваться» друг с другом образуя гидрофобные связи, но не образуют водородные связи с водой и поэтому не растворяются в ней. К ним относятся радикалы с неполярными связями (углеводородные радикалы). Гидрофильные радикалы имеют полярные связи и образуют диполь-дипольные или водородные связи водой. Гидрофобные и гидрофильные радикалы АК определяют пространственное строение белка, в который они входят.

Среди полярных радикалов также выделяют с зарядом (положительно и отрицательно заряженные), они лучше растворяются в воде и незаряженные, они растворяются в воде хуже.

Таблица. Строение аминокислот – мономеров белка

Читайте так же:  Л карнитин в продуктах питания

1.АК с алифатическими углеводородными радикалами (гидрофобные)

Глицин

Полимеры мономерами которых являются аминокислоты 30

Аланин

Полимеры мономерами которых являются аминокислоты 79

Валин

Полимеры мономерами которых являются аминокислоты 35

Лейцин

Полимеры мономерами которых являются аминокислоты 128

Изолейцин

Полимеры мономерами которых являются аминокислоты 47

2. АК с ароматическими углеводородными радикалами (гидрофобные)

Фенилаланин

Полимеры мономерами которых являются аминокислоты 70

3. АК с гидроксильными группами (гидрофильные)

Серин

Полимеры мономерами которых являются аминокислоты 126

Треонин

Полимеры мономерами которых являются аминокислоты 92

Тирозин

Полимеры мономерами которых являются аминокислоты 48

4. АК с серосодержашими радикалами (гидрофильные)

Цистеин

Полимеры мономерами которых являются аминокислоты 146

Метионин

Полимеры мономерами которых являются аминокислоты 192

5. АК с карбоксильной группой в радикале (гидрофильные отрицательно заряженные)

Аспарагиновая кислота

Полимеры мономерами которых являются аминокислоты 55

Глутаминовая кислота

Полимеры мономерами которых являются аминокислоты 142

6. АК, содержащие амидные группы (гидрофильные)

Аспарагин

Полимеры мономерами которых являются аминокислоты 26

Глутамин

Полимеры мономерами которых являются аминокислоты 175

7. АК, содержащие аминогруппу в радикале (гидрофильные, положительно заряженные)

Лизин

Полимеры мономерами которых являются аминокислоты 68

8. АК, содержащие гуанидиновую группу (гидрофильные, положительно заряженные

Аргинин

Полимеры мономерами которых являются аминокислоты 42

9. АК с гетероциклическими радикалами

Триптофан (гидрофобный)

Полимеры мономерами которых являются аминокислоты 66

Гистидин (гидрофильный, + заряженный)

Видео (кликните для воспроизведения).

Полимеры мономерами которых являются аминокислоты 13

Пролин (гидрофобный)

Полимеры мономерами которых являются аминокислоты 50

— биологические полимеры, мономерами которых являются аминокислоты. В ходе образования белка аминокислоты взаимодействуют между собой, образуя пептидные связи, в результате чего формируется длинная полипептидная цепь. Понятия «белок» и «пептид» близки между собой, однако между ними имеются и различия. Пептидами обычно называют олигопептиды, т. е. те, чья цепь содержит наибольшее число аминокислотных остатков (10-15), а белками называют пептиды, со­держащие большое число аминокислотных остатков (до нескольких тысяч) и имеющие определенную компактную пространственную структуру, так как длинная полипептидная цепь является энергетически невыгодным состоянием. Выделяются четыре уровня пространственной организации (структуры) бел­ков. Все структуры формируются в каналах эндоплазматической сети. При воздействии неблагоприятных факторов среды (облучение, повышенная температура, химические вещества) структуры белка могут разрушаться — происходит денатурация. Если этот процесс не затрагивает первичной структуры, он обратим, и по окончании воздействия молекула самопроизвольно восстанавливается. Первичная же структура невосстановима, так как формируется только на рибосомах при участии сложнейшего механизма биосинтеза белков. В зависи­мости от пространственной структуры белки бывают фибрил­лярные (в виде волокон) — строительные белки и глобулярные (в виде шара) — ферменты, антитела, некоторые гормоны и др. Роль белков очень многообразна. Это главнейший строительный материал клеток: они входят в состав мембран, рибосом, хромо­сом, матрикса митохондрий, стромы пластид. Белки являются структурным элементом ферментов — катализаторов, влияю­щих на процессы метаболизма клеток — ассимиляцию (синтез) и диссимиляцию (расщепление) веществ. Гормоны — регулято­ры процессов роста и развития любых организмов        также представляют собой  белки.   Белки  выполняют   транспортную (перенос О2 и СО2 гемоглобином), двигательную (сократитель­ные белки мышц), защитную (антитела), сигнальную (реакция на раздражение), механическую (прочность различных струк­тур) функции и могут быть источником энергии. При расщепле­нии 1 г белка освобождается 1 7,6 кДж энергии, т. е. столько же, сколько при расщеплении 1 г углеводов. В организме каждого человека около 100 тыс. различных белков, отличающихся от белков другого человека. Поэтому при пересадке органов возни­кает несовместимость и чужой орган отторгается. Переливание крови без учета специфики ее белков приводит к склеиванию эритроцитов. Аналогичный механизм приводит к образованию антител при реакции на чужеродный белок микробов.

Источник: Т.Л. Богданова  «Пособие для поступающих в вузы»

2.3 Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения ифункций неорганических и органических веществ (белков, нуклеиновыхкислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химическихвеществ в клетке и организме человека.
 

Основные термины и понятия, проверяемые в экзаменационной работе: азотистые основания, активный центр фермента, гидрофильность, гидрофобность, аминокислоты, АТФ, белки, биополимеры, денатурация, ДНК, дезоксирибоза, комплементарность, липиды, мономер, нуклеотид, пептидная связь, полимер, углеводы, рибоза, РНК, ферменты, фосфолипиды.

Неорганические вещества клетки

В состав клетки входит около 70 элементов периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы:

макроэлементы – H, O, N, C, Mg, Na, Ca, Fe, K, P, Cl, S;

микроэлементы – В, Ni, Cu, Co, Zn, Mb и др.;

ультрамикроэлементы – U, Ra, Au, Pb, Hg, Se и др.

В состав клетки входят молекулы неорганических и органических соединений.

Неорганические соединения клетки – вода и неорганические ионы.

Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды: так как молекулы воды полярны, то вода обладает свойством растворять полярные молекулы других веществ. Вещества, растворимые в воде, называются гидрофильными. Вещества, нерастворимые в воде называются гидрофобными.

Вода обладает высокой удельной теплоемкостью. Чтобы разорвать многочисленные водородные связи, имеющиеся между молекулами воды, требуется поглотить большое количество энергии. Вспомните, как долго нагревается до кипения чайник. Это свойство воды обеспечивает поддержание теплового баланса в организме.

Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева.

Вода может находиться в трех агрегатных состояниях – жидком, твердом и газообразном.

Водородные связи обуславливают вязкость воды и сцепление ее молекул с молекулами других веществ. Благодаря силам сцепления молекул на поверхности воды создается пленка, обладающая такой характеристикой, как поверхностное натяжение.

При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшей плотности вода достигает при 4 Сº. При замерзании вода расширяется (необходимо место для образования водородных связей) и ее плотность уменьшается. Поэтому лед плавает.

Биологические функции воды. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

Вода – активный участник реакций обмена веществ.

Читайте так же:  Аминокислоты к месту синтеза белка

Вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме. Эти жидкости находятся в суставах позвоночных животных, в плевральной полости, в околосердечной сумке.

Вода входит в состав слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей. Водную основу имеют и секреты, выделяемые некоторыми железами и органами: слюна, слезы, желчь, сперма и т. д.

Неорганические ионы. К неорганическим ионам клетки относятся: катионы K+, Na+, Ca2+, Mg2+, NH3+ и анионы Cl—, NO3-, Н2PO4-, NCO3-, НPO42-.

Разность между количеством катионов и анионов (Nа+, Ка+, Сl-) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6–9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7–4.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот. Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

Органические вещества клетки. Углеводы, липиды

Углеводы. Общая формула Сn (H2O)n. Следовательно, углеводы содержат в своем составе только три химических элемента.

Растворимые в воде углеводы.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков. Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК.

Дисахариды: сахароза (глюкоза + фруктоза) – основной продукт фотосинтеза, транспортируемый в растениях. Лактоза (глюкоза + галактоза) – входит в состав молока млекопитающих. Мальтоза (глюкоза + глюкоза) – источник энергии в прорастающих семенах.

Полимерные углеводы: крахмал, гликоген, целлюлоза, хитин. Они не растворимы в воде.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.

Крахмал состоит из разветвленных спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза – полимер, образованный остатками глюкозы, состоящими из нескольких прямых параллельных цепей, соединенных водородными связями. Такая структура препятствует проникновению воды и обеспечивает устойчивость целлюлозных оболочек растительных клеток.

Хитин состоит из аминопроизводных глюкозы. Основной структурный элемент покровов членистоногих и клеточных стенок грибов.
Гликоген – запасное вещество животной клетки. Гликоген еще более ветвистый, чем крахмал и хорошо растворимы в воде.

Липиды – сложные эфиры жирных кислот и глицерина. Нерастворимы в воде, но растворимы в неполярных растворителях. Присутствуют во всех клетках. Липиды состоят из атомов водорода, кислорода и углерода. Виды липидов: жиры, воска, фосфолипиды. 

Функции липидов: запасающая – жиры, откладываются в запас в тканях позвоночных животных. Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров. Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка. Защитная – подкожный жировой слой защищает организм от механических повреждений. Структурная – фосфолипиды входят в состав клеточных мембран. Теплоизоляционная – подкожный жир помогает сохранить тепло. Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов. Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма. Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот. Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.

Белки, их строение и функции

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты. Белки синтезируются в живых организмах и выполняют в них определенные функции.

В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы. Мономерами белков являются аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал. Именно радикалами аминокислоты отличаются друг от друга. Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут. Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Структура белковой молекулы. Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

Последовательность аминокислот в молекуле белка образует его первичную структуру. Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок. Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.

Длинная молекула белка сворачивается и приобретает сначала вид спирали. Так возникает вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.

Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами). Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными. Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность. Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.

В любой клетке есть сотни белковых молекул, выполняющих различные функции. Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т. д.

Читайте так же:  L карнитин и bcaa как принимать

Функции белков.

Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.

Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.
Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.

Структурная – одна из основных функций белков. Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.

Сократительная – обеспечивается сократительными белками – актином и миозином.

Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.

Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.

Нуклеиновые кислоты

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах. К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНк, р-РНК.

Дезоксирибонуклеиновая кислота (ДНК) – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.

Мономерами ДНК являются нуклеотиды. Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.

Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью. Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.

Пример: дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.

На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно изменится и белок, кодируемый данным геном. (Воспользовавшись школьным учебником, попытайтесь убедиться в этом.) Изменения в составе нуклеотидов или их последовательности называются мутацией.

Рибонуклеиновая кислота (РНК) – линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Виды РНК. Матричная, или информационная, РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5 % РНК клетки. Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85 % РНК клетки. Транспортная РНК (более 40 видов). Транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70–90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ. АТФ представляет собой нуклеотид, состоящий из азотистого основания – аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Сравните эту цифру с цифрой, обозначающей количество выделенной энергии 1 г глюкозы или жира. Способность запасать такое количество энергии делает АТФ ее универсальным источником. Синтез АТФ происходит в основном в митохондриях.

Источник:  Г.И. Лернер. Биология. Полный справочник для подготовки к ЕГЭ

 

2.3 Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения ифункций неорганических и органических веществ (белков, нуклеиновыхкислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химическихвеществ в клетке и организме человека.
 

Основные термины и понятия, проверяемые в экзаменационной работе: азотистые основания, активный центр фермента, гидрофильность, гидрофобность, аминокислоты, АТФ, белки, биополимеры, денатурация, ДНК, дезоксирибоза, комплементарность, липиды, мономер, нуклеотид, пептидная связь, полимер, углеводы, рибоза, РНК, ферменты, фосфолипиды.

Неорганические вещества клетки

В состав клетки входит около 70 элементов периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы:

макроэлементы – H, O, N, C, Mg, Na, Ca, Fe, K, P, Cl, S;

микроэлементы – В, Ni, Cu, Co, Zn, Mb и др.;

ультрамикроэлементы – U, Ra, Au, Pb, Hg, Se и др.

В состав клетки входят молекулы неорганических и органических соединений.

Неорганические соединения клетки – вода и неорганические ионы.

Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды: так как молекулы воды полярны, то вода обладает свойством растворять полярные молекулы других веществ. Вещества, растворимые в воде, называются гидрофильными. Вещества, нерастворимые в воде называются гидрофобными.

Вода обладает высокой удельной теплоемкостью. Чтобы разорвать многочисленные водородные связи, имеющиеся между молекулами воды, требуется поглотить большое количество энергии. Вспомните, как долго нагревается до кипения чайник. Это свойство воды обеспечивает поддержание теплового баланса в организме.

Читайте так же:  Л карнитин для чего нужен организму

Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева.

Вода может находиться в трех агрегатных состояниях – жидком, твердом и газообразном.

Водородные связи обуславливают вязкость воды и сцепление ее молекул с молекулами других веществ. Благодаря силам сцепления молекул на поверхности воды создается пленка, обладающая такой характеристикой, как поверхностное натяжение.

При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшей плотности вода достигает при 4 Сº. При замерзании вода расширяется (необходимо место для образования водородных связей) и ее плотность уменьшается. Поэтому лед плавает.

Биологические функции воды. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

Вода – активный участник реакций обмена веществ.

Вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме. Эти жидкости находятся в суставах позвоночных животных, в плевральной полости, в околосердечной сумке.

Вода входит в состав слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей. Водную основу имеют и секреты, выделяемые некоторыми железами и органами: слюна, слезы, желчь, сперма и т. д.

Неорганические ионы. К неорганическим ионам клетки относятся: катионы K+, Na+, Ca2+, Mg2+, NH3+ и анионы Cl—, NO3-, Н2PO4-, NCO3-, НPO42-.

Разность между количеством катионов и анионов (Nа+, Ка+, Сl-) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6–9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7–4.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот. Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

Органические вещества клетки. Углеводы, липиды

Углеводы. Общая формула Сn (H2O)n. Следовательно, углеводы содержат в своем составе только три химических элемента.

Растворимые в воде углеводы.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков. Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК.

Дисахариды: сахароза (глюкоза + фруктоза) – основной продукт фотосинтеза, транспортируемый в растениях. Лактоза (глюкоза + галактоза) – входит в состав молока млекопитающих. Мальтоза (глюкоза + глюкоза) – источник энергии в прорастающих семенах.

Полимерные углеводы: крахмал, гликоген, целлюлоза, хитин. Они не растворимы в воде.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.

Крахмал состоит из разветвленных спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза – полимер, образованный остатками глюкозы, состоящими из нескольких прямых параллельных цепей, соединенных водородными связями. Такая структура препятствует проникновению воды и обеспечивает устойчивость целлюлозных оболочек растительных клеток.

Хитин состоит из аминопроизводных глюкозы. Основной структурный элемент покровов членистоногих и клеточных стенок грибов.
Гликоген – запасное вещество животной клетки. Гликоген еще более ветвистый, чем крахмал и хорошо растворимы в воде.

Липиды – сложные эфиры жирных кислот и глицерина. Нерастворимы в воде, но растворимы в неполярных растворителях. Присутствуют во всех клетках. Липиды состоят из атомов водорода, кислорода и углерода. Виды липидов: жиры, воска, фосфолипиды. 

Функции липидов: запасающая – жиры, откладываются в запас в тканях позвоночных животных. Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров. Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка. Защитная – подкожный жировой слой защищает организм от механических повреждений. Структурная – фосфолипиды входят в состав клеточных мембран. Теплоизоляционная – подкожный жир помогает сохранить тепло. Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов. Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма. Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот. Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.

Белки, их строение и функции

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты. Белки синтезируются в живых организмах и выполняют в них определенные функции.

В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы. Мономерами белков являются аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал. Именно радикалами аминокислоты отличаются друг от друга. Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут. Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Структура белковой молекулы. Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

Последовательность аминокислот в молекуле белка образует его первичную структуру. Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок. Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.

Читайте так же:  Аргинин аминокислота в каких продуктах

Длинная молекула белка сворачивается и приобретает сначала вид спирали. Так возникает вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.

Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами). Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными. Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность. Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.

В любой клетке есть сотни белковых молекул, выполняющих различные функции. Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т. д.

Функции белков.

Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.

Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.
Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.

Структурная – одна из основных функций белков. Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.

Сократительная – обеспечивается сократительными белками – актином и миозином.

Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.

Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.

Нуклеиновые кислоты

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах. К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНк, р-РНК.

Дезоксирибонуклеиновая кислота (ДНК) – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.

Мономерами ДНК являются нуклеотиды. Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.

Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью. Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.

Пример: дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.

На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно изменится и белок, кодируемый данным геном. (Воспользовавшись школьным учебником, попытайтесь убедиться в этом.) Изменения в составе нуклеотидов или их последовательности называются мутацией.

Рибонуклеиновая кислота (РНК) – линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Виды РНК. Матричная, или информационная, РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5 % РНК клетки. Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85 % РНК клетки. Транспортная РНК (более 40 видов). Транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70–90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ. АТФ представляет собой нуклеотид, состоящий из азотистого основания – аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Сравните эту цифру с цифрой, обозначающей количество выделенной энергии 1 г глюкозы или жира. Способность запасать такое количество энергии делает АТФ ее универсальным источником. Синтез АТФ происходит в основном в митохондриях.

Источник:  Г.И. Лернер. Биология. Полный справочник для подготовки к ЕГЭ

Видео (кликните для воспроизведения).

 

Источники:

  1. Хаббард Дианетика: современная наука душевного здоровья / Хаббард, Л. Рон. — М.: Воскресенье, 1993. — 576 c.
  2. Гиппиус, С. В. Актерский тренинг. Гимнастика чувств / С.В. Гиппиус. — М.: Прайм-Еврознак, 2006. — 384 c.
Полимеры мономерами которых являются аминокислоты
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here