Заменимые и незаменимые аминокислоты биохимия

Предлагаем вашему вниманию статью на тему: "Заменимые и незаменимые аминокислоты биохимия" от профессиональных спортсменов, их тренеров и врачей. Статья будет полезна как новичкам, так и опытным спортсменам. Все вопросы можно задать в комментариях или на странице контактов.

Министерство здравоохранения Республики Беларусь

Учреждение образования

«Гомельский государственный медицинский университет»

Кафедра биологической химии

Обсуждено на заседании кафедры биологической химии

Протокол № __________

Для проведения занятия со студентами

2 Курса фпсзс по биологической химии

(наименование дисциплины)

Тема: Белки 1. Переваривание и всасывание. Анализ желудочного сока. Время 3ч.

1. УЧЕБНЫЕ И ВОСПИТАТЕЛЬНЫЕ ЦЕЛИ, МОТИВАЦИЯ ДЛЯ УСВОЕНИЯ ТЕМЫ; ТРЕБОВАНИЕ К ИСХОДНОМУ УРОВНЮ ЗНАНИЙ.

Цель занятия: формирование представления о пищевой ценности белков, молекулярных механизмах их переваривания и всасывания в желудочно-кишечном тракте, путях формирования пула свободных аминокислот тканей и жидкостей организма. Освоение методов определения кислотности и патологических компонентов желудочного сока.

В результате проведения занятия студент должен:

1) Знать: строение, классификацию и свойства аминокислот; уровни структурной организации белковой молекулы; механизм микросомального окисления; механизмы мембранного транспорта веществ.

2) Научиться проводить титриметрический анализ; проводить качественные реакции на кровь и молочную кислоту.

2. КОНТРОЛЬНЫЕ ВОПРОСЫ ИЗ СМЕЖНЫХ ДИСЦИПЛИН.

2.1. Структура и свойства белков и аминокислот (биоорганическая химия).

2.2. Строение пищеварительной системы (анатомия).

2.3. Механизмы регуляции деятельности желудочно-кишечного тракта (физиология).

2.4. Бактериальная микрофлора полостей ЖКТ (микробиология).

3.КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ТЕМЕ ЗАНЯТИЯ.

1. Роль белков в питании. Полноценные и неполноценные белки. Нормы белка в питании. Заменимые и незаменимые аминокислоты. Азотистый баланс

Роль белков в питании.

Источники свободных аминокислот в клетке:

  1. белки пищи;

  2. собственные белки тканей;

  3. синтез аминокислот из углеводов.

В организме человека в сутки распадается на аминокислоты около 400 г белков, примерно столько же синтезируется. Тканевые белки не могут восполнять затраты аминокислот при их катаболизме и использовании на синтез других веществ. Первичными источниками аминокислот не могут служить и углеводы, т.к. из них синтезируются только углеродная часть молекулы большинства аминокислот. Следовательно, основным источником аминокислот организма служат белки пищи.

Полноценные и неполноценные белки.

Все белки по биологической ценности подразделяются на 2-е группы:

-условно полноценные

-условно неполноценные.

Факторы полноценности белка:

1) аминокислотный состав (чем ближе аминокислотный состав принимаемого с пищей белка к аминокислотному составу белков тела, тем выше его биологическая ценность);

2) усвояемость белка (зависит от аминокислотного состава и от степени гидролиза белка под действием ферментов ЖКТ. Ряд белков, близких по аминокислотному составу белкам тела — шерсть, волосы не используются в пищу, потому что не перевариваются протеиназами кишечника.

Например, степень усвоения белка куриного яйца составляет 95%

-мяса составляет 85%

-молока — 70%

3) потребность организма в белках.

Растительные белки не являются полноценными, т. к. они покрыты специфическими бета-гликозидными оболочками, а в организме нет ферментов, расщепляющих ее. Полноценными белками являются животные белки.

Условно-полноценными считаются те белки, которые содержат 10 незаменимых аминокислот (эссенциальных):

Аргинин*

Лизин

Валин

Метионин

Гистидин *

Треонин

Изолейцин

Триптофан

Лейцин

Фенилаланин

Аргинин и гистидин являются частично заменимыми, т.к. синтезируются в организме в количестве удовлетворяющем потребность в этих АК взрослого организма, но не детского.

Недостаток какой-либо одной аминокислоты ведет к неполному усвоению и других аминокислот. В этом случае вступает в силу закон «минимума» Либиха: «рост и развитие живых организмов определяется тем незаменимым веществом, которое поступает с пищей в минимальном количестве».

Нормы белка в питании.

(1г на 1 кг массы тела)

Нормы белка для взрослого человека и для детей разного возраста учитывают разные климатические условия, условия труда, профессию, возраст и др. факторы.

Для взрослого человека, занимающегося умственным трудом, уровень белка должен составлять 100-120 г/сутки.

Для людей, занимающихся частично механизированным трудом -120-130 г/сутки.

Рабочие, выполняющие тяжелую физическую работу, должны получать 130-150 г белка в сутки.

Для детей суточная потребность в белках определяется возрастом и массой:

1-3 года —-> 55 г/сутки

4-6 лет —-> 72 -//-

7-9 -//- —-> 89 -//-

10-12 -//- —-> 100 -//-

Суточные потребности в белках возрастают при беременности и лактации, при патологических состояниях, когда организм теряет белок с мочой, асцитной жидкостью, экссудатами (нефриты, ожоги, травмы).

Заменимые и незаменимые аминокислоты

В то время как растения и микроорганизмы могут синтезировать все аминокислоты, млекопитающие в ходе эволюции утратили способность к синтезу примерно половины из 20 протеиногенных аминокислот. Поэтому незаменимые аминокислоты должны поступать с пищей. Так, организм высших организмов не способен синтезировать ароматические аминокислоты de novo (тирозин не является незаменимой аминокислотой только потому, что может образоваться из фенилаланина). К незаменимым аминокислотам принадлежат аминокислоты с разветвленной боковой цепью: валин и изолейцин, а также лейцин, треонин, метионин и лизин. Гистидин и аргинин являются незаменимыми для крыс, но касается ли это также человека — спорно.

Заменимые аминокислоты (аланин, аспарагиновая и глутаминовая кислоты и их амиды, аспарагин и глутамин) образуются в результате трансаминирования из промежуточных метаболитов — 2-кетокислот. Пролин синтезируется в достаточных количествах из глутамата, а представители серинового семейства (серин, глицин и цистеин) сами являются естественными метаболитами организма животных.

Заменимые аминокислоты

Незаменимые аминокислоты

аланин

фенилаланин

аспарагиновая кислота

лизин

аспарагин

аргинин*

глутаминовая кислота

гистидин*

глутамин

валин

пролин

лейцин

серин

изолейцин

глицин

треонин

цистеин

метионин

тирозин

триптофан

Азотистый баланс.

Поскольку основная масса азота пищи представлена белками, принято считать, что для правильной оценки состояния белкового обмена точным критерием является определение азотистого баланса (АБ).
АБ — соотношение количества поступившего с пищей белка к количеству продуктов метаболизма этого же белка, выраженное в г/сут.

Здесь следует отметить, что количество пищевого азота (соответственно белка) можно легко и точно определить, т. к. 6,25г белка содержит 1г N2, то количество N2 умножают на 6,25 и получают количество белка, в то время как количество теряемого азота не всегда легко определить, поскольку на практике учитывают только азотистые продукты, выделяемые с мочой и калом, потерей азота с молоком, слюной, эпителием кожи, волосами пренебрегают.

В возрасте от 30 до 45 лет при нормальном белковом питании наблюдается азотистое равновесие: АБ = 0.

Бывает положительный АБ: количество поступившего с пищей азота (белка) больше, чем количество выделившегося азота (белка).

ПАБ наблюдается при растущем организме, во время беременности, выздоровлении, отдыхе, почечной недостаточности.

Бывает отрицательный АБ: количество выделяемого азота (белка) больше, чем количество поступившего. Наблюдается при голодании, физической нагрузке, опухолях, высокой температуре, у старых людей даже без видимой патологии.

Соотношение белков, липидов и углеводов в детском организме:1:1:2, у взрослых — 4:1:1.

2. Обмен простых белков. Переваривание белков в ЖКТ. Состав и свойства желудочного сока. Значение компонентов сока в переваривании белков (HCl, пепсин, слизь и др.). Характеристика пепсина. Механизмы образования и секреции HCl в желудочном соке. Регуляция секреции HCl (роль гистамина, гастрина, ацетилхолина и др.).

Обмен простых белков.

Белки в организме, независимо от их функций, находятся в динамическом состоянии. Это значит, что они постоянно синтезируются и распадаются. Эти процессы названы белковым обменом. Существует необходимость замены белков, которые теряют свою биологическую активность путем окисления, денатурации и другими необратимыми модификациями.

Скорость обмена разных белковых молекул различна. Некоторые белки, подобно иммуноглобулинам, имеют длинную жизнь, измеряемую годами, в то время как другие имеют короткую жизнь (в минутах). Эти процессы протекают в каждой клетке, но клетки некоторых тканей более активны, чем другие. Например, белки печени и кишечника обмениваются быстрее, чем белки скелетной мышцы. Синтез и распад белка необязательно протекает в одной и той же клетке. Некоторые клетки секретируют белки, которые затем работают и распадаются в другом месте (альбумин, антитела, ферменты, катализирующие процессы пищеварения, гормоны). Приблизительное содержание и обмен некоторых белков приводится ниже.

Белок или ткань

Содержание белка (кг)

Время полураспада (сут)

Коллаген (мышцы, кожа, кость)

3.3

Миозин, актин ( мышцы)

3.0

Альбумины, глобулины (мышцы)

1.7

Гемоглобин

0.9

Белки плазмы

0.4

Печень, почки, легкие

0.5

Заменимые и незаменимые аминокислоты биохимия 71

Схема обмена белков у человека. (Цифры на схеме показывают общее количество обмениваемого азота в граммах)

Переваривание белков в ЖКТ.

В желудочно-кишечном тракте под действием протеолитических ферментов происходит расщепление белков. Они имеют различную специфичность и последовательно гидролизуют белки до аминокислот.

Для переваривания белков необходимы:

  • Водный раствор с различным значением рН и концентрацией электролитов (создает условия, необходимые для оптимальной активности ферментов)

  • Предшественники ферментов — протеолитические ферменты — синтезируются в виде неактивных предшественников (проферментов) и затем активируются в полости желудочно-кишечного тракта. Проферменты активируются путем ограниченного протеолиза.

  • Слизь (мукопротеины) – высоковязкие растворы мукопротеинов действуют как смазочные средства, ускоряя прохождение пищи по ЖКТ.

Переваривание белков осуществляется главным образом до аминокислот, в форме которых и происходит всасывание. Гидролиз химически сводится к разрыву пептидной связи. При расщеплении одной пептидной связи происходит снижение свободной энергии на 16,8 кДж. Протеолитические ферменты чувствительны:

  • к размеру полипептида;

  • к точке приложения гидролиза;

  • к природе аминокислот, участвующих в образовании пептидной связи.

Все белки подвергаются воздействию ограниченного числа протеолитических ферментов, относящихся к классу гидролаз (пептидаз). Известны 2-е группы пептидаз:

  • экзопептидазы — катализируют разрыв концевой пептидной связи с освобождением одной какой-либо а/к;

  • эндопептидазы — гидролизуют пептидные связи внутри полипептидной цепи, а также, в зависимости от природы а/к, и некоторые концевые пептидные связи.

Состав и свойства желудочного сока. Значение компонентов сока в переваривании белков (HCl, пепсин, слизь и др.). Характеристика пепсина.

Читайте так же:  Лучшее спортивное питание для массы

Желудочный сок — бесцветная жидкость кислой реакции (pH =1-6). Главные компоненты — H2O (99%) и 1% сухой остаток.

Соляная кислота: свободная (H+ и Cl-) и связанная форма (на поверхности частиц в форме хлоридов). HCl вместе с лактатом и ПВК формирует общую кислотность. Наличие лактата имеет диагностическое значение; повышение его содержания свидетельствует о раке желудка.

Важнейшие органические компоненты, ферменты желудочного сока:

1. Пепсин (эндопептидаза), активен при pH = 0,8 — 5,4 (оптимум pH = 2,0). Обладает протеазным, пептидазным, транспептидазным действием. Очень активен (1г пепсина за 2 часа способен расщепить 50кг яичного альбумина). Неактивная форма — пепсиноген. В процессе активации HCl образуются пепсины 2-х групп:1-ая группа (их 5) образуется в своде желудка; 2-ая группа (их 3) — в привратнике. Из них собственно пепсинами называются ферменты, гидролизующие белки с максимальной скоростью при pH = 1,5 — 2,0. Другая фракция гидролизует белки с максимальной скоростью при pH = 3,2 — 3,5 и называется гастриксином. Отношение между пепсином и гастриксином составляет от 1:2,5 до 1:6.Пепсин и гастриксин отличаются изоэлектрическими точками и электрофоретической подвижностью.

Пепсин расщепляет практически все природные белки, кроме некоторых кератинов, гистонов, протаминов и мукопротеидов.

2. Реннин (сычужный фермент — химозин) встречается преимущественно у детей. Его роль заключается в створаживании молока, т. е. он превращает растворимый казеиноген в нерастворимый казеин, кальциевая соль которого выпадает в осадок в виде творога:

Ca2+

казеиноген ——————> нерастворимый казеин (творог).

реннин

В желудке взрослого человека роль реннина выполняет пепсин.

3. Парапепсин (обладает желатиназным действием, в 140 раз сильнее пепсина).

4. Муцин — защитный фактор: обволакивает слизистую, защищая ее от действия HCl, выполняет роль сорбента, на котором иммобилизируется пепсин.

5. Муколизин — фактор, растворяющий слизь. Существует слизь 2-ух фаз: нерастворимой, или видимой, и растворимой. Нерастворимая слизь выполняет защитную функцию: она формирует защитный барьер, который препятствует контакту слизистой с содержимым желудка, ингибирует пепсин, нейтрализует HCl (за счет буферных свойств слизи).

6. Липаза — расщепляет эмульгированные жиры (молока) до глицерина и ЖК.

7. Амилаза — очень мало, имеет реинкреторное роисхождение (из плазмы крови).

8. Лизоцим — оказывает бактерицидное действие.

9. Ряд а/к, имеющих диагностическое значение.

10. Гликопротеид, необходимый для транспорта Vit B12.

11. Соли: хлориды, сульфаты, фосфаты, бикарбонаты, нитраты.

12. Ионы — K+, Na+, Ca2+, Mg2+, Cl-.

13. Патологические компоненты: молочная кислота и кровь.

Образование желудочного сока осуществляется секреторным аппаратом слизистой, который представлен несколькими видами клеток:

  1. главные — продуцируют пепсиногены и химозин;

  2. обкладочные (париетальные) участвуют в образовании HCl: поставляют Cl-;

  3. добавочные — единственные клетки, продуцирующие сульфатированные мукополисахариды;

  4. слизистые (среди них млечные — камбиальные);

  5. эндокринные — 8 типов:

ЕС — энтерохромаффинные (серотонин);

ECL — энтерохромаффиноподобные (гистамин);

G — гастриновые (гастрин);

А — вырабатывают глюкагон;

D — соматостатин;

D1 — ВИП;

P — бомбезин;

PP — ПП.

Гастрин имеет 4 формы:

а) минигастрин (13 а/к);

б) малый гастрин (17 а/к);

в) большой гастрин (34 а/к);

г) супер-гастрин.

Гастрин — специфический стимулятор желудочной секреции, оказывает трофическое влияние на слизистую желудка, стимулирует выделение гистамина.

Энтерогастрон, ваго-, бульбо-, сиало-, соматогастрон и гастрон тормозят желудочную секрецию и секрецию HCl.

Бомбезин — стимулирует секрецию HCl, играет роль рилизинг фактора по отношению к другим гастроинтестинальным гормонам.

Видео (кликните для воспроизведения).

ВИП — мощный ингибитор гастрина, подавляет секрецию HCl, сильный дилятатор.

Гистамин — через аденилатциклазный механизм активирует карбоангидразу, участвующую в секреции HCl.

ТТГ, АКТГ — стимуляторы желудочной секреции.

СТГ — стимулирует слизеобразование.

PG — в некотором роде оказывает действие сходное с действием гистамина.

Механизмы образования и секреции HCl в желудочном соке.

Секреция соляной кислоты обкладочными клетками является процессом активного транспорта (идет с затратой энергии АТФ).

Диоксид углерода (СО) диффундирует из крови в обкладочные клетки, где гидратируется (соединяется с молекулой воды) при участии карбоангидразы с образованием угольной кислоты, которая спонтанно диссоциирует на протон водорода Н+и анион гидрокарбоната (НСО-)..Протоны водорода Н+ транспортируются Н+/К+-АТФ-азой из цитоплазматического пространства обкладочных клеток в просвет желудка, при этом концентрация протонов в желудке возрастает примерно в 106 раз (концентрация Н+ в клетке примерно 10-7 M = рН 7, в просвете желудка примерно 10-1 M = рН 1). Равновесие ионов между кровью и обкладочными клетками достигается поступлением НСО3- в кровь в обмен на ионы Cl, поступающие из крови в гастроцит. Хлорид-ионы следуют за активно секретируемыми (при помощи Н+/К+-АТФ-азы) протонами через хлоридный канал в просвет желудка (для сохранения электронейтральности).

Заменимые и незаменимые аминокислоты биохимия 131

Минимальная скорость секреции HCl наблюдается с 5 до 11 утра.

В норме общая кислотность желудочного сока должна составлять 40-60 ммоль/л (связанная HCl + свободная HCl). Свободная HCl — 20-40 ммоль/л, связанная HCl — 10-20 ммоль/л.

Роль HCl.

1. Активирует пепсин: вначале осуществляется первичная активация пепсиногена с последующим превращением его в пепсин аутокаталитически (под действием активного пепсина).

HCl

Пепсиноген —————> пепсин

— 42 а/к

От N- конца молекулы пепсиногена отщепляется 42 а/к остатка, что составляет 5 нейтральных пептидов и один щелочной пептид, который считается ингибитором пепсина.

2. Создает оптимум pH для действия ферментов желудочного сока. (pH = 1,5 _+ 0,5)

3. Обладает бактерицидным действием (является своего рода фактором неспецифической защиты организма).

4. Принимает участие в денатурации белков и их набухании.

5. Участвует в створаживании молока.

6. Осуществляет декальцинацию костей.

7. Стимулирует секреторную, моторную и гормональную деятельность ЖКТ. 8. Ускоряет всасывание железа.

9. Активирует образование гастрина из прогастрина.

Регуляция секреции HCl (роль гистамина, гастрина, ацетилхолина и др.).

Механизм секреции HCl находится под контролем инсулина и гистамина. Секреция соляной кислоты стимулируется гистамином через H2 рецепторы, ацетилхолином через M3 мускариновые рецепторы, и гастрином, частично через гастриновые рецепторы в мембранах париетальных клеток. H2 рецепторы увеличивают внутриклеточный цАМФ при участии Gs белков, а мускариновые и гастриновые рецепторы проявляют свои эффекты, увеличивая концентрацию внутриклеточного свободного Ca2+. Действие одного из указанных регуляторов обычно потенцируeт ответ другого на возбуждение. Простагландины, особенно E ряда, ингибируют секрецию кислоты, активируя Gi (ингибирующие) белки, и это объясняет частично повышение риска язвенной болезни у людей, принимающих антивоспалительные препараты, которые ингибируют синтез простагландинов.

Циклическая АМФ и Ca2+ действуют через протеинкиназы, повышая транспорт H+ в желудочный просвет H+-K+ АТФазой.

Заменимые и незаменимые аминокислоты биохимия 111

Гипоацидоз наблюдается:

  1. при недостатке инсулина;

  2. при дефиците Vit B1;

  3. при нарушении энергообразовательных процессов.

  1. Кишечный сок. Его состав и свойства. Характеристика панкреатических и кишечных ферментов. Механизм активации трипсина, химотрипсина и др.

Переваривание в кишечнике иногда называют панкреатическим перевариванием, поскольку основные ферменты образуются и секретируются поджелудочной железой. Панкреатический сок содержит ферменты, которые несут основную функцию в переваривании белков.

Панкреатический сок — бесцветная жидкость щелочной реакции pH = 7,8 — 8,4. Щелочность обусловлена наличием бикарбонатов, концентрация которых изменяется прямо пропорционально скорости секреции. Источником бикарбонатов является как бикарбонат плазмы крови, так и образующийся CO2 в pancreas в результате окисления.

Неорганические компоненты: Na+, K+, Mg2+, Ca2+, Cl-.

Органические компоненты, главным образом ферменты:

1. Трипсин (эндопептидаза, гидролизует пептидные связи, образованные карбоксильными группами основных аминокислот — лиз и арг).

Трипсин — активная форма трипсиногена. Первичная активация трипсиногена осуществляется энтерокиназой и заключается в отщеплении от N-конца 6 а/к: ВАЛ — (АСП)4 — ЛИЗ. В дальнейшем аналогичный процесс происходит под действием активного трипсина, т. е. путем аутокатализа. При этом происходит формирование активного центра и трехмерной структуры трипсина.

Ca2+

Трипсиноген ——————————> трипсин

энтерокиназа

Такой механизм активации называется частичным (ограниченным) протеолизом. Он имеет большое биологическое значение:

1) исключает самопереваривание органа;

2) обеспечивает более тонкую регуляцию количества фермента.

Если бы трипсин вырабатывался в активной форме в pancreas, то он бы оказывал протеолитическое воздействие на клетки железы, вызывая некроз, что и наблюдается при остром панкреатите. В этом случае трипсин появляется в крови и его определение в сыворотке крови, является надежным ферментным тестом в диагностике острого панкреатита.

2. Химотрипсин (эндопептидаза, гидролизует пептидные связи, образованные карбоксильными группами ароматических аминокислот (фен, тир, три).

.

Химотрипсин бывает нескольких разновидностей (альфа, бета, гамма, пи), но это все различные кристаллические формы одного и того же белка. Они синтезируются из двух предшественников — химотрипсиногенов А и В. Они активируются первоначально под действием трипсина и впоследствии под действием химотрипсинов аутокаталитически.

Получены доказательства, что разрыв одной пептидной связи между АРГ и ЛЕЙ в молекуле химотрипсиногена А под действием трипсина приводит к формированию пи-химотрипсина, обладающего наибольшей ферментативной активностью. Последующее отщепление серил-аргинина приводит к образованию бета-химотрипсина. Аутокаталитическая активация приводит к образованию вначале неактивного неохимотрипсина, который под действием трипсина превращается в альфа-химотрипсин. Альфа-химотрипсин образуется из бета-химотрипсина под действием активного химотрипсина.

Химотрипсин обладает более широкой субстратной специфичностью, чем трипсин. Он катализирует гидролиз не только пептидов, но и эфиров, амидов.

3. Эластаза (эндопептидаза, гидролизует пептидные связи, образованные карбоксильными группами маленьких алифатичеких аминокислот (гли, ала, сер).

Выделяется в виде проэластазы и активируется трипсином. Гидролизует пептидные связи эластина.

. Карбоксипептидазы (экзопептидазы).

Представлены двумя видами: А и В. А — разрывают преимущественно связи, образованные С-концевыми ароматическими а/к, В — катализируют отщепление С-концевых остатков диаминокислот: АРГ и ЛИЗ. А и В карбоксипептидазы активируются трипсином.

А — обладает бифункциональной активностью — пептидазной и эстеразной и содержит ион Zn2+. При замене Zn на Ca происходит полная потеря пептидазной активности и усиление эстеразной.

Читайте так же:  Пить ли протеин при похудении

. Альфа-амилаза — расщепляет альфа-1,4 -гликозидные связи, активируется ионами Ca2+, которые повышают устойчивость фермента к изменению температуры и pH.

Для нормальной жизнедеятельности организма необходимо 20 аминокислот. Восемь аминокислот из этого перечня могут поступать в организм только из пищи, и поэтому называются незаменимыми. К ним относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин. К заменимым аминокислотам относятся 12 аминокислот, которые могут как синтезироваться в организме, так и попадать в него вместе с пищей (аланин, глицин, пролин, серин, цистеин, аспарагин, аспарагиновая кислота, глутаминовая кислота, глютамин, лизин, аргинин, тирозин). Их можно разделить на заменимые и условно-незаменимые. Условно-незаменимыми аминокислотами (к ним относятся аргинин, гистидин, цистеин, тирозин) называют те, которые при определенных физиологических состояниях не могут вырабатываться в достаточных количествах. В некоторых случаях они могут вырабатываться в организме из незаменимых аминокислот.

Краткое описание функций аминокислот.

Самая главная и важнейшая роль аминокислот — служить «строительным материалом» для всех белков организма. Кроме биосинтеза белков, аминокислоты участвуют в большинстве биологически активных соединений, которые отвечают за регуляцию процессов обмена веществ, например, входят в состав гормонов и нейромедиаторов. Важной функцией аминокислот является их участие в синтезе биогенных аминов, липидов, углеводов и нуклеиновых кислот. Аминокислоты также выполняют и энергетические функции, например — в случае преимущественно белкового питании и при некоторых заболеваниях (сахарный диабет).

Незаменимые аминокислоты

Лизин входит в состав практически любых белков. Лизин также понижает уровень триглицеридов в сыворотке крови. Эта аминокислота оказывает противовирусное действие, особенно в отношении вирусов, вызывающих герпес и острые респираторные инфекции. Способствует поддержанию оптимального баланса азота, правильному формированию костной системы и всасыванию кальция, участвует в выработке альбуминов, антител и ферментов. Хорошо сочетается с витамином С и биофлавоноидами.

Метионин обеспечивает дезинтоксикационные процессы, прежде всего по связыванию тяжелых металлов, эндогенных и экзогенных токсинов, а также при токсикозе беременности. Метионин оказывает выраженное антиоксидантное действие, так как является хорошим источником серы, инактивирующей свободные радикалы, принимает участие в процессах регенерации тканей печени и почек. Помогает переработке жиров, предотвращая их отложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. В организме переходит в цистеин и креатин.

Треонин поддерживает липотропную функцию печени совместно с метионином и аспартамом. Треонин играет важную роль в образовании коллагена и эластина. Он повышает иммунитет, участвует в производстве антител.

Фенилаланин принимает активное участие в синтезе белков, повышает умственную активность, память. Он способствует улучшению секреторной функции поджелудочной железы и печени. Из фенилаланина может образовываться тирозин, который используется для синтеза норэпинефрина (передатчика нервных импульсов), способствующих улучшению умственного восприятия, усиливая выработку гормонов щитовидной железы, также обладающих антидепрессантными свойствами.

Триптофан необходим для производства витамина B3 (ниацина) и серотонина-важнейшего нейромедиатора, передающего нервные импульсы. Серотонин нормализует сон, стабилизирует настроение, снижает аппетит. Триптофан снижает содержание жиров, образующих холестерин в крови, также обладает гипотензивным свойством, расширяя кровеносные сосуды. Участвует в синтезе альбуминов и глобулинов, усиливает выделение гормона роста.

Валин необходим для восстановления поврежденных тканей и метаболических процессов в мышцах при тяжелых нагрузках и для поддержания нормального обмена азота в организме, оказывает стимулирующее действие. Способствует улучшению мышечной координации, а также снижает чувствительность к таким факторам окружающей среды, как жара и холод. Относится к разветвленным аминокислотам, может быть использован мышцами в качестве источника энергии вместе с лейцином и изолейцином. 

Лейцин, действуя вместе с валином и изолейцином, защищают мышечные ткани и является источником энергии, также способствует восстановлению костей, кожи, мышц. Лейцин также несколько понижает уровень сахара в крови и стимулирует выделение гормона роста. Обеспечивает поддержку иммунной системы человека

Изолейцин необходим для образования гемоглобина, стабилизирует уровень сахара в крови. Является самым важным компонентом мышечной ткани, выступающим в организме в роле альтернативного источника энергии.

Заменимые аминокислоты (синтезируемые в организме человека)

Аланин нормализует метаболизм углеводов, принимает участие в регуляции сахара в крови. Является составной частью таких незаменимых нутриентов как пантотеновая кислота и коэнзим А.

Аргинин замедляет рост опухолей, в том числе раковых, за счет стимуляции иммунной системы организма. Он повышает активность вилочковой железы, которая вырабатывает T-лимфоциты. Его также применяют при заболеваниях печени (цирроз и жировая дистрофия), он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака). Он способствует поддержанию оптимального азотного баланса в организме, так как участвует в транспортировке и обезвреживании избыточного азота в организме. Стимулирует выработку гормона роста, что вызывает некоторое уменьшение запасов жира в организме. Аргинин повышает половую активность у мужчин за счет восстановления эректильной функции и стимуляции сперматогенеза.

Аспарагиновая кислота в организме присутствует в составе белков и в свободном виде. Играет важную роль в обмене азотистых веществ. Участвует в образовании пиримидиновых оснований мочевины. Биологическое действие аспарагиновой кислоты: иммуномодулирующее, повышающее физическую выносливость, нормализующее баланс возбуждения и торможения в ЦНС.

Аспарагин. Принимает участие в процессе преобразования углеводов в глюкозу, обеспечивает запас гликогена Участвует в синтезе ряда важных соединений — нуклеозидмонофосфатов пуринового ряда, азотистых оснований и мочевины, обеспечивает обезвреживания аммиака в организме

Гистидин усиливает секрецию соляной кислоты и пепсина в желудке. Стимулирует образование гемоглобина и кроветворение в целом. Гистидин способствует улучшению половой функции, так как гистамин (производное гистидина) положительно влияет на эректильную функцию и усиливает половое возбуждение.

Глицин (аминоуксусная кислота) является источником креатина, используемого при синтезе РНК и ДНК, замедляет дегенерацию мышечной ткани. является центральным нейромедиатором тормозного типа действия, оказывает седативное действие, улучшает метаболические процессы в тканях мозга, ослабляет влечение к алкоголю, оказывает положительное влияние при мышечных дистрофиях, уменьшает повышенную раздражительность, нормализует сон.

Глутаминовая кислота (глутамин) является «организатором» синтеза различных белков. Кроме того, способна связывать избыток азота (в том числе аммиак), который может вызывать нарушение работы различных органов, но, прежде всего мозга и печени. В центральной нервной системе глутаминовая кислота является возбуждающим нейромедиатором. Глутаминовая кислота является важной составляющей мышечной ткани, воздействует на гормон роста.

Глутамин — способствует устранению из организма продуктов метаболизма жиров, замедлению процесса оседания жира в печени, увеличению гормона роста и угнетению секреции кортизола.

Пролин участвует в синтезе коллагена, восстанавливает структуру соединительной ткани (в том числе опорно-двигательного аппарата, паренхиматозных органов, сердца). Применяется в качестве альтернативного источника энергии.

Серин — обеспечивает производство клеточной энергии, способствует стимуляции системы иммунитета организма.

Тирозин является предшественником нейромедиаторов норадреналина и дофамина. Тиреоидные гормоны образуются при присоединении к тирозину атомов йода. Эта аминокислота участвует в регуляции настроения; недостаток тирозина приводит к дефициту норадреналина, что, в свою очередь приводит к депрессии. Тирозин подавляет аппетит, способствует уменьшению отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза. Симптомами дефицита тирозина также являются пониженное артериальное давление, низкая температура тела и синдром беспокойных ног. Тирозин может синтезироваться из фенилаланина в организме человека.

Цистеин — серосодержащая аминокислота играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов. Цистеин входит в состав альфа-керотина, основного белка ногтей, кожи и волос. Он способствует формированию коллагена и улучшает эластичность кожи. Цистеин входит в состав и других белков организма, в том числе некоторых пищеварительных ферментов. Цистеин помогает обезвреживать некоторые токсические вещества и защищает организм от повреждающего действия радиации. Он представляет собой один из самых мощных антиоксидантов. Цистеин является предшественником глютатиона — вещества, оказывающего защитное действие на клетки печени и головного мозга от повреждения алкоголем, некоторых лекарственных препаратов и токсических веществ, в том числе содержащихся в сигаретном дыме. Эта аминокислота образуется в организме из метионина, при обязательном присутствии витамина B6.

Для поддержания здоровья в каждом из приемов пищи крайне важно соблюдать достаточное количество незаменимых аминокислот

в оптимальном их соотношении

.

Заменимые и незаменимые аминокислоты, значение и потребность в них

В настоящее время известно 80 аминокислот, наибольшее значение в питании имеют 30, которые наиболее часто встречаются в продуктах и чаще всего потребляются человеком. К ним относятся следующие.[1]

1. Алифатические аминокислоты:

а) моноаминомонокарбоновые – глицин, аланин, изолейцин, лейцин, валин;

б) оксимоноаминокарбоновые – серин, треонин;

в) моноаминодикарбоновые – аспаргиновая, глютаминовая;

г) амиды моноаминодикарбоновых кислот – аспарагин, глутамин;

д) диаминомонокарбоновые – аргинин, лизин;

е) серосодержащие – гистин, цистеин, метионин.

2. Ароматические аминокислоты: фенилаланин, тирозин.

3. Гетероциклические аминокислоты: триптофан, гистидин, пролин, оксипролин.

Наибольшее значение в питании представляют незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только извне – с продуктами питания. К их числу относят 8 аминокислот: метионин, лизин, триптофан, треонин, фенилаланин, валин, лейцин, изолейцин. В эту группу входят и аминокислоты, которые в детском организме не синтезируются или синтезируются в недостаточном количестве. Прежде всего это гистидин. Предметом дискуссий является также вопрос о незаменимости в детском возрасте глицина, цистина, а у недоношенных детей также глицина и тирозина. Биологическая активность гормонов АКТГ, инсулина, а также коэнзима А и глютатиона определена наличием в их составе SH-групп цистина. У новорожденных детей из-за недостатка цистеназы лимитирован переход метионина в цистин. В организме взрослого человека тирозин легко образуется из фенилаланина, а цистин – из метионина, однако обратной заменяемости нет. Таким образом, можно считать, что число незаменимых аминокислот составляет 11—12.

Читайте так же:  Что лучше протеин или bcaa?

Поступающий белок считается полноценным, если в нем присутствуют все незаменимые аминокислоты в сбалансированном состоянии. К таким белкам по своему химическому составу приближаются белки молока, мяса, рыбы, яиц, усвояемость которых около 90 %. Белки растительного происхождения (мука, крупа, бобовые) не содержат полного набора незаменимых аминокислот и поэтому относятся к разряду неполноценных. В частности, в них содержится недостаточное количество лизина. Усвоение таких белков составляет, по некоторым данным, 60 %.

Для изучения биологической ценности белков используют две группы методов: биологические и химические. В основе биологических лежит оценка скорости роста и степени утилизации пищевых белков организмом. Данные методы являются трудоемкими и дорогостоящими.

Химический метод колоночной хроматографии позволяет быстро и объективно определить содержание аминокислот в пищевых белках. На основании этих данных биологическую ценность белков определяют путем сравнения аминокислотного состава изучаемого белка со справочной шкалой аминокислот гипотетического идеального белка или аминограмм высококачественных стандартных белков. Этот методический прием получил название аминокислотного СКОРА = отношению количества АК в мг в 1 г исследуемого белка к количеству АК в мг в 1 г идеального белка, умноженного на 100 %.

Белки животного происхождения имеют наибольшую биологическую ценность, растительные – лимитированы по ряду незаменимых аминокислот, прежде всего по лизину, а в пшенице и рисе – также и по треонину. Белки коровьего молока отличаются от белков грудного дефицитом серосодержащих аминокислот (метионина, цистина). К «идеальному белку» по данным ВОЗ приближается белок грудного молока и яиц.

Важным показателем качества пищевого белка служит также степень его усвояемости. По степени переваривания протеолитическими ферментами пищевые белки располагаются следующим образом:

1) белки рыбы и молока;

2) белки мяса;

3) белки хлеба и круп.

Белки рыбы лучше усваиваются из-за отсутствия в их составе белка соединительной ткани. Белковая полноценность мяса оценивается по соотношению между триптофаном и оксипролином. Для мяса высокого качества это соотношение составляет 5,8.

Каждая аминокислота из группы эссенциальных играет определенную роль. Их недостаток или избыток ведет к каким-либо изменениям в организме.

Биологическая роль незаменимых аминокислот

Гистидин играет важную роль в образовании гемоглобина крови. Недостаток гистидина приводит к снижению уровня гемоглобина в крови. При декарбоксилировании гистидин превращается в гистамин – вещество, имеющее большое значение в расширении сосудистой стенки и ее проницаемости, влияет на выделение желудочного пищеварительного сока. Недостаток гистидина, так же как и избыток, ухудшает условно-рефлекторную деятельность.

Валин – физиологическая роль данной НАК недостаточно ясна. При недостаточном поступлении у лабораторных животных отмечаются расстройства координации движений, гиперестезия.

Изолейцин наряду с лейцином входит в состав всех белков организма (за исключением гемоглобина). В плазме крови содержится 0,89 мг% изолейцина. Отсутствие изолейцина в пище приводит к отрицательному азотистому балансу, к замедлению процессов роста и развития.

Лизин относится к одной из наиболее важных незаменимых аминокислот. Он входит в триаду аминокислот, особенно учитываемых при определении общей полноценности питания: триптофан, лизин, метионин. Оптимальное соотношение этих аминокислот составляет: 1 : 3 : 2 или 1 : 3 : 3, если взять метионин + цистин (серосодержащие аминокислоты). Недостаток в пище лизина приводит к нарушению кровообращения, снижению количества эритроцитов и уменьшению в них гемоглобина. Также отмечаются нарушение азотистого баланса, истощение мышц, нарушение кальцификации костей. Происходит также ряд изменений в печени и легких. Потребность в лизине составляет 3—5 г в сутки. В значительных количествах лизин содержится в твороге, мясе, рыбе.

Метионин играет важную роль в процессах метилирования и трансметилирования. Это основной донатор метильных групп, которые используются организмом для синтеза холина (витамина группы В). Метионин относится к липотропным веществам. Он оказывает влияние на обмен жиров и фосфолипидов в печени и таким образом играет важную роль в профилактике и лечении атеросклероза. Установлена связь метионина с обменом витамина В12 и фолиевой кислотой, которые стимулируют отделение метильных групп метионина, обеспечивая таким образом синтез холина в организме. Метионин имеет большое значение для функции надпочечников и необходим для синтеза адреналина. Суточная потребность в метионине составляет около 3 г. Основным источником метионина следует считать молоко и молочные продукты: в 100 г казеина содержится 3 г метионина.

Триптофан, так же как и треонин, – фактор роста и поддержания азотистого равновесия. Участвует в образовании сывороточных белков и гемоглобина. Триптофан необходим для синтеза никотиновой кислоты. Установлено, что из 50 мг триптофана образуется около 1 мг ниацина, в связи с чем 1 мг ниацина или 60 мг триптофана могут быть приняты как единый «ниациновый эквивалент». Суточная потребность в никотиновой кислоте в среднем определена в количестве 14—28 ниациновых эквивалентов, а в расчете на сбалансированную мегакалорию – 6,6 ниациновых эквивалентов. Потребность организма в триптофане составляет 1 г в сутки. В продуктах питания триптофан распределен неравномерно. Так, например, 100 г мяса эквивалентно по содержанию триптофана 500 мл молока. Из растительных продуктов необходимо выделить бобовые. Очень мало триптофана в кукурузе, поэтому в тех районах, где кукуруза является традиционным источником питания, следует проводить профилактические осмотры для определения обеспеченности организма витамином PP.

Фенилаланин связан с функцией щитовидной железы и надпочечников. Он дает ядро для синтеза тироксина – основной аминокислоты, образующей белок щитовидной железы. Из фенилаланина может синтезироваться тирозин и далее адреналин. Однако обратного синтеза из тирозина-фенилаланин не происходит.

Существуют стандарты сбалансированности НАК, разработанные с учетом возрастных данных. Для взрослого человека (г/сутки): триптофана – 1, лейцина 4—6, изолейцина 3—4, валина 3—4, треонина 2—3, лизина 3—5, метионина 2—4, фенилаланина 2—4, гистидина 1,5—2.

Заменимые аминокислоты

Потребность организма в заменимых аминокислотах удовлетворяется в основном за счет эндогенного синтеза, или реутилизации. За счет реутилизации образуется 2/3 собственных белков организма. Ориентировочная суточная потребность взрослого человека в основных заменимых аминокислотах следующая (г/сутки): аргинин – 6, цистин – 2—3, тирозин – 3—4, аланин – 3, серин – 3, глутаминовая кислота – 16, аспирагиновая кислота – 6, пролин – 5, глюкокол (глицин) – 3.

Заменимые аминокислоты выполняют в организме весьма важные функции, причем некоторые из них (аргинин, цистин, тирозин, глутаминовая кислота) играют физиологическую роль не меньшую, чем незаменимые (эссенциальные) аминокислоты.

Интересны некоторые аспекты использования заменимых аминокислот в пищевой промышленности, например глутаминовой кислоты. В наибольших количествах она содержится только в свежих пищевых продуктах. По мере хранения или консервирования пищевых продуктов глутаминовая кислота в них разрушается, и продукты теряют свойственные им ароматы и вкус. В промышленности чаще используют натриевую соль глутаминовой кислоты. В Японии глутаминат натрия называют «Аджино мотто» – сущность вкуса. Пищевые продукты опрыскивают 1,5—5%-ным раствором глутамината натрия, и они долго сохраняют аромат свежести. Поскольку глутаминат натрия обладает антиокислительными свойствами, то пищевые продукты могут храниться более длительные сроки.

Потребность в белках зависит от возраста, пола, характера трудовой деятельности, климатических и национальных особенностей и т. д. Исследованиями установлено, что азотистое равновесие в организме взрослого человека поддерживается при поступлении не менее 55—60 г белка, однако эта величина не учитывает стрессовые ситуации, болезни, интенсивные физические нагрузки. В связи с этим в нашей стране установлена оптимальная потребность взрослого человека в белке 90—100 г/сутки. При этом в пищевом рационе за счет белка должно обеспечиваться в среднем 11—13 % общей его энергетической ценности, а в процентном отношении белок животного происхождения должен составлять не менее 55 %.

Американскими и шведскими учеными установлены ультраминимальные нормы потребления белков на основании эндогенного распада тканевых белков при безбелковых диетах: 20—25 г/сутки. Однако такие нормы при постоянном использовании не удовлетворяют потребности организма человека и не обеспечивают нормальной работоспособности, так как при распаде тканевых белков образующиеся аминокислоты, используемые в дальнейшем для ресинтеза белка, не могут обеспечить должную замену животного белка, поступающего с пищей, и это приводит к отрицательному азотистому балансу.

Энергетическая потребность людей первой группы интенсивности труда (группа умственного труда) составляет 2500 ккал. 13 % от этой величины составляет 325 ккал. Таким образом, потребность в белке у студентов составляет приблизительно 80 г (325 ккал: 4 ккал = 81,25 г) белка.

У детей потребность в белках определяется возрастными нормами. Количество белка из-за преобладания в организме пластических процессов на 1 кг массы тела увеличено. В среднем эта величина составляет 4 г/кг у детей от 1 до 3 лет жизни, 3,5 —4 г/кг для детей 3—7 лет, 3 г/кг – для детей 8—10 лет и детей старше 11 лет – 2,5—2 г/кг, в то время как в среднем у взрослых 1,2—1,5 г/кг в сутки.

Для нормальной жизнедеятельности организма необходимо 20 аминокислот. Восемь аминокислот из этого перечня могут поступать в организм только из пищи, и поэтому называются незаменимыми. К ним относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин. К заменимым аминокислотам относятся 12 аминокислот, которые могут как синтезироваться в организме, так и попадать в него вместе с пищей (аланин, глицин, пролин, серин, цистеин, аспарагин, аспарагиновая кислота, глутаминовая кислота, глютамин, лизин, аргинин, тирозин). Их можно разделить на заменимые и условно-незаменимые. Условно-незаменимыми аминокислотами (к ним относятся аргинин, гистидин, цистеин, тирозин) называют те, которые при определенных физиологических состояниях не могут вырабатываться в достаточных количествах. В некоторых случаях они могут вырабатываться в организме из незаменимых аминокислот.

Читайте так же:  L карнитин инструкция по применению

Краткое описание функций аминокислот.

Самая главная и важнейшая роль аминокислот — служить «строительным материалом» для всех белков организма. Кроме биосинтеза белков, аминокислоты участвуют в большинстве биологически активных соединений, которые отвечают за регуляцию процессов обмена веществ, например, входят в состав гормонов и нейромедиаторов. Важной функцией аминокислот является их участие в синтезе биогенных аминов, липидов, углеводов и нуклеиновых кислот. Аминокислоты также выполняют и энергетические функции, например — в случае преимущественно белкового питании и при некоторых заболеваниях (сахарный диабет).

Незаменимые аминокислоты

Лизин входит в состав практически любых белков. Лизин также понижает уровень триглицеридов в сыворотке крови. Эта аминокислота оказывает противовирусное действие, особенно в отношении вирусов, вызывающих герпес и острые респираторные инфекции. Способствует поддержанию оптимального баланса азота, правильному формированию костной системы и всасыванию кальция, участвует в выработке альбуминов, антител и ферментов. Хорошо сочетается с витамином С и биофлавоноидами.

Метионин обеспечивает дезинтоксикационные процессы, прежде всего по связыванию тяжелых металлов, эндогенных и экзогенных токсинов, а также при токсикозе беременности. Метионин оказывает выраженное антиоксидантное действие, так как является хорошим источником серы, инактивирующей свободные радикалы, принимает участие в процессах регенерации тканей печени и почек. Помогает переработке жиров, предотвращая их отложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. В организме переходит в цистеин и креатин.

Треонин поддерживает липотропную функцию печени совместно с метионином и аспартамом. Треонин играет важную роль в образовании коллагена и эластина. Он повышает иммунитет, участвует в производстве антител.

Фенилаланин принимает активное участие в синтезе белков, повышает умственную активность, память. Он способствует улучшению секреторной функции поджелудочной железы и печени. Из фенилаланина может образовываться тирозин, который используется для синтеза норэпинефрина (передатчика нервных импульсов), способствующих улучшению умственного восприятия, усиливая выработку гормонов щитовидной железы, также обладающих антидепрессантными свойствами.

Триптофан необходим для производства витамина B3 (ниацина) и серотонина-важнейшего нейромедиатора, передающего нервные импульсы. Серотонин нормализует сон, стабилизирует настроение, снижает аппетит. Триптофан снижает содержание жиров, образующих холестерин в крови, также обладает гипотензивным свойством, расширяя кровеносные сосуды. Участвует в синтезе альбуминов и глобулинов, усиливает выделение гормона роста.

Валин необходим для восстановления поврежденных тканей и метаболических процессов в мышцах при тяжелых нагрузках и для поддержания нормального обмена азота в организме, оказывает стимулирующее действие. Способствует улучшению мышечной координации, а также снижает чувствительность к таким факторам окружающей среды, как жара и холод. Относится к разветвленным аминокислотам, может быть использован мышцами в качестве источника энергии вместе с лейцином и изолейцином. 

Лейцин, действуя вместе с валином и изолейцином, защищают мышечные ткани и является источником энергии, также способствует восстановлению костей, кожи, мышц. Лейцин также несколько понижает уровень сахара в крови и стимулирует выделение гормона роста. Обеспечивает поддержку иммунной системы человека

Изолейцин необходим для образования гемоглобина, стабилизирует уровень сахара в крови. Является самым важным компонентом мышечной ткани, выступающим в организме в роле альтернативного источника энергии.

Заменимые аминокислоты (синтезируемые в организме человека)

Аланин нормализует метаболизм углеводов, принимает участие в регуляции сахара в крови. Является составной частью таких незаменимых нутриентов как пантотеновая кислота и коэнзим А.

Аргинин замедляет рост опухолей, в том числе раковых, за счет стимуляции иммунной системы организма. Он повышает активность вилочковой железы, которая вырабатывает T-лимфоциты. Его также применяют при заболеваниях печени (цирроз и жировая дистрофия), он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака). Он способствует поддержанию оптимального азотного баланса в организме, так как участвует в транспортировке и обезвреживании избыточного азота в организме. Стимулирует выработку гормона роста, что вызывает некоторое уменьшение запасов жира в организме. Аргинин повышает половую активность у мужчин за счет восстановления эректильной функции и стимуляции сперматогенеза.

Аспарагиновая кислота в организме присутствует в составе белков и в свободном виде. Играет важную роль в обмене азотистых веществ. Участвует в образовании пиримидиновых оснований мочевины. Биологическое действие аспарагиновой кислоты: иммуномодулирующее, повышающее физическую выносливость, нормализующее баланс возбуждения и торможения в ЦНС.

Аспарагин. Принимает участие в процессе преобразования углеводов в глюкозу, обеспечивает запас гликогена Участвует в синтезе ряда важных соединений — нуклеозидмонофосфатов пуринового ряда, азотистых оснований и мочевины, обеспечивает обезвреживания аммиака в организме

Гистидин усиливает секрецию соляной кислоты и пепсина в желудке. Стимулирует образование гемоглобина и кроветворение в целом. Гистидин способствует улучшению половой функции, так как гистамин (производное гистидина) положительно влияет на эректильную функцию и усиливает половое возбуждение.

Глицин (аминоуксусная кислота) является источником креатина, используемого при синтезе РНК и ДНК, замедляет дегенерацию мышечной ткани. является центральным нейромедиатором тормозного типа действия, оказывает седативное действие, улучшает метаболические процессы в тканях мозга, ослабляет влечение к алкоголю, оказывает положительное влияние при мышечных дистрофиях, уменьшает повышенную раздражительность, нормализует сон.

Глутаминовая кислота (глутамин) является «организатором» синтеза различных белков. Кроме того, способна связывать избыток азота (в том числе аммиак), который может вызывать нарушение работы различных органов, но, прежде всего мозга и печени. В центральной нервной системе глутаминовая кислота является возбуждающим нейромедиатором. Глутаминовая кислота является важной составляющей мышечной ткани, воздействует на гормон роста.

Глутамин — способствует устранению из организма продуктов метаболизма жиров, замедлению процесса оседания жира в печени, увеличению гормона роста и угнетению секреции кортизола.

Пролин участвует в синтезе коллагена, восстанавливает структуру соединительной ткани (в том числе опорно-двигательного аппарата, паренхиматозных органов, сердца). Применяется в качестве альтернативного источника энергии.

Серин — обеспечивает производство клеточной энергии, способствует стимуляции системы иммунитета организма.

Тирозин является предшественником нейромедиаторов норадреналина и дофамина. Тиреоидные гормоны образуются при присоединении к тирозину атомов йода. Эта аминокислота участвует в регуляции настроения; недостаток тирозина приводит к дефициту норадреналина, что, в свою очередь приводит к депрессии. Тирозин подавляет аппетит, способствует уменьшению отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза. Симптомами дефицита тирозина также являются пониженное артериальное давление, низкая температура тела и синдром беспокойных ног. Тирозин может синтезироваться из фенилаланина в организме человека.

Цистеин — серосодержащая аминокислота играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов. Цистеин входит в состав альфа-керотина, основного белка ногтей, кожи и волос. Он способствует формированию коллагена и улучшает эластичность кожи. Цистеин входит в состав и других белков организма, в том числе некоторых пищеварительных ферментов. Цистеин помогает обезвреживать некоторые токсические вещества и защищает организм от повреждающего действия радиации. Он представляет собой один из самых мощных антиоксидантов. Цистеин является предшественником глютатиона — вещества, оказывающего защитное действие на клетки печени и головного мозга от повреждения алкоголем, некоторых лекарственных препаратов и токсических веществ, в том числе содержащихся в сигаретном дыме. Эта аминокислота образуется в организме из метионина, при обязательном присутствии витамина B6.

Для поддержания здоровья в каждом из приемов пищи крайне важно соблюдать достаточное количество незаменимых аминокислот

в оптимальном их соотношении

.

Заменимые и незаменимые аминокислоты, значение и потребность в них

В настоящее время известно 80 аминокислот, наибольшее значение в питании имеют 30, которые наиболее часто встречаются в продуктах и чаще всего потребляются человеком. К ним относятся следующие.[1]

1. Алифатические аминокислоты:

а) моноаминомонокарбоновые – глицин, аланин, изолейцин, лейцин, валин;

б) оксимоноаминокарбоновые – серин, треонин;

в) моноаминодикарбоновые – аспаргиновая, глютаминовая;

г) амиды моноаминодикарбоновых кислот – аспарагин, глутамин;

д) диаминомонокарбоновые – аргинин, лизин;

е) серосодержащие – гистин, цистеин, метионин.

2. Ароматические аминокислоты: фенилаланин, тирозин.

3. Гетероциклические аминокислоты: триптофан, гистидин, пролин, оксипролин.

Наибольшее значение в питании представляют незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только извне – с продуктами питания. К их числу относят 8 аминокислот: метионин, лизин, триптофан, треонин, фенилаланин, валин, лейцин, изолейцин. В эту группу входят и аминокислоты, которые в детском организме не синтезируются или синтезируются в недостаточном количестве. Прежде всего это гистидин. Предметом дискуссий является также вопрос о незаменимости в детском возрасте глицина, цистина, а у недоношенных детей также глицина и тирозина. Биологическая активность гормонов АКТГ, инсулина, а также коэнзима А и глютатиона определена наличием в их составе SH-групп цистина. У новорожденных детей из-за недостатка цистеназы лимитирован переход метионина в цистин. В организме взрослого человека тирозин легко образуется из фенилаланина, а цистин – из метионина, однако обратной заменяемости нет. Таким образом, можно считать, что число незаменимых аминокислот составляет 11—12.

Поступающий белок считается полноценным, если в нем присутствуют все незаменимые аминокислоты в сбалансированном состоянии. К таким белкам по своему химическому составу приближаются белки молока, мяса, рыбы, яиц, усвояемость которых около 90 %. Белки растительного происхождения (мука, крупа, бобовые) не содержат полного набора незаменимых аминокислот и поэтому относятся к разряду неполноценных. В частности, в них содержится недостаточное количество лизина. Усвоение таких белков составляет, по некоторым данным, 60 %.

Читайте так же:  Жиросжигатели для похудения женщин топ

Для изучения биологической ценности белков используют две группы методов: биологические и химические. В основе биологических лежит оценка скорости роста и степени утилизации пищевых белков организмом. Данные методы являются трудоемкими и дорогостоящими.

Химический метод колоночной хроматографии позволяет быстро и объективно определить содержание аминокислот в пищевых белках. На основании этих данных биологическую ценность белков определяют путем сравнения аминокислотного состава изучаемого белка со справочной шкалой аминокислот гипотетического идеального белка или аминограмм высококачественных стандартных белков. Этот методический прием получил название аминокислотного СКОРА = отношению количества АК в мг в 1 г исследуемого белка к количеству АК в мг в 1 г идеального белка, умноженного на 100 %.

Белки животного происхождения имеют наибольшую биологическую ценность, растительные – лимитированы по ряду незаменимых аминокислот, прежде всего по лизину, а в пшенице и рисе – также и по треонину. Белки коровьего молока отличаются от белков грудного дефицитом серосодержащих аминокислот (метионина, цистина). К «идеальному белку» по данным ВОЗ приближается белок грудного молока и яиц.

Важным показателем качества пищевого белка служит также степень его усвояемости. По степени переваривания протеолитическими ферментами пищевые белки располагаются следующим образом:

1) белки рыбы и молока;

2) белки мяса;

3) белки хлеба и круп.

Белки рыбы лучше усваиваются из-за отсутствия в их составе белка соединительной ткани. Белковая полноценность мяса оценивается по соотношению между триптофаном и оксипролином. Для мяса высокого качества это соотношение составляет 5,8.

Каждая аминокислота из группы эссенциальных играет определенную роль. Их недостаток или избыток ведет к каким-либо изменениям в организме.

Биологическая роль незаменимых аминокислот

Гистидин играет важную роль в образовании гемоглобина крови. Недостаток гистидина приводит к снижению уровня гемоглобина в крови. При декарбоксилировании гистидин превращается в гистамин – вещество, имеющее большое значение в расширении сосудистой стенки и ее проницаемости, влияет на выделение желудочного пищеварительного сока. Недостаток гистидина, так же как и избыток, ухудшает условно-рефлекторную деятельность.

Валин – физиологическая роль данной НАК недостаточно ясна. При недостаточном поступлении у лабораторных животных отмечаются расстройства координации движений, гиперестезия.

Изолейцин наряду с лейцином входит в состав всех белков организма (за исключением гемоглобина). В плазме крови содержится 0,89 мг% изолейцина. Отсутствие изолейцина в пище приводит к отрицательному азотистому балансу, к замедлению процессов роста и развития.

Лизин относится к одной из наиболее важных незаменимых аминокислот. Он входит в триаду аминокислот, особенно учитываемых при определении общей полноценности питания: триптофан, лизин, метионин. Оптимальное соотношение этих аминокислот составляет: 1 : 3 : 2 или 1 : 3 : 3, если взять метионин + цистин (серосодержащие аминокислоты). Недостаток в пище лизина приводит к нарушению кровообращения, снижению количества эритроцитов и уменьшению в них гемоглобина. Также отмечаются нарушение азотистого баланса, истощение мышц, нарушение кальцификации костей. Происходит также ряд изменений в печени и легких. Потребность в лизине составляет 3—5 г в сутки. В значительных количествах лизин содержится в твороге, мясе, рыбе.

Метионин играет важную роль в процессах метилирования и трансметилирования. Это основной донатор метильных групп, которые используются организмом для синтеза холина (витамина группы В). Метионин относится к липотропным веществам. Он оказывает влияние на обмен жиров и фосфолипидов в печени и таким образом играет важную роль в профилактике и лечении атеросклероза. Установлена связь метионина с обменом витамина В12 и фолиевой кислотой, которые стимулируют отделение метильных групп метионина, обеспечивая таким образом синтез холина в организме. Метионин имеет большое значение для функции надпочечников и необходим для синтеза адреналина. Суточная потребность в метионине составляет около 3 г. Основным источником метионина следует считать молоко и молочные продукты: в 100 г казеина содержится 3 г метионина.

Триптофан, так же как и треонин, – фактор роста и поддержания азотистого равновесия. Участвует в образовании сывороточных белков и гемоглобина. Триптофан необходим для синтеза никотиновой кислоты. Установлено, что из 50 мг триптофана образуется около 1 мг ниацина, в связи с чем 1 мг ниацина или 60 мг триптофана могут быть приняты как единый «ниациновый эквивалент». Суточная потребность в никотиновой кислоте в среднем определена в количестве 14—28 ниациновых эквивалентов, а в расчете на сбалансированную мегакалорию – 6,6 ниациновых эквивалентов. Потребность организма в триптофане составляет 1 г в сутки. В продуктах питания триптофан распределен неравномерно. Так, например, 100 г мяса эквивалентно по содержанию триптофана 500 мл молока. Из растительных продуктов необходимо выделить бобовые. Очень мало триптофана в кукурузе, поэтому в тех районах, где кукуруза является традиционным источником питания, следует проводить профилактические осмотры для определения обеспеченности организма витамином PP.

Фенилаланин связан с функцией щитовидной железы и надпочечников. Он дает ядро для синтеза тироксина – основной аминокислоты, образующей белок щитовидной железы. Из фенилаланина может синтезироваться тирозин и далее адреналин. Однако обратного синтеза из тирозина-фенилаланин не происходит.

Существуют стандарты сбалансированности НАК, разработанные с учетом возрастных данных. Для взрослого человека (г/сутки): триптофана – 1, лейцина 4—6, изолейцина 3—4, валина 3—4, треонина 2—3, лизина 3—5, метионина 2—4, фенилаланина 2—4, гистидина 1,5—2.

Заменимые аминокислоты

Потребность организма в заменимых аминокислотах удовлетворяется в основном за счет эндогенного синтеза, или реутилизации. За счет реутилизации образуется 2/3 собственных белков организма. Ориентировочная суточная потребность взрослого человека в основных заменимых аминокислотах следующая (г/сутки): аргинин – 6, цистин – 2—3, тирозин – 3—4, аланин – 3, серин – 3, глутаминовая кислота – 16, аспирагиновая кислота – 6, пролин – 5, глюкокол (глицин) – 3.

Заменимые аминокислоты выполняют в организме весьма важные функции, причем некоторые из них (аргинин, цистин, тирозин, глутаминовая кислота) играют физиологическую роль не меньшую, чем незаменимые (эссенциальные) аминокислоты.

Интересны некоторые аспекты использования заменимых аминокислот в пищевой промышленности, например глутаминовой кислоты. В наибольших количествах она содержится только в свежих пищевых продуктах. По мере хранения или консервирования пищевых продуктов глутаминовая кислота в них разрушается, и продукты теряют свойственные им ароматы и вкус. В промышленности чаще используют натриевую соль глутаминовой кислоты. В Японии глутаминат натрия называют «Аджино мотто» – сущность вкуса. Пищевые продукты опрыскивают 1,5—5%-ным раствором глутамината натрия, и они долго сохраняют аромат свежести. Поскольку глутаминат натрия обладает антиокислительными свойствами, то пищевые продукты могут храниться более длительные сроки.

Потребность в белках зависит от возраста, пола, характера трудовой деятельности, климатических и национальных особенностей и т. д. Исследованиями установлено, что азотистое равновесие в организме взрослого человека поддерживается при поступлении не менее 55—60 г белка, однако эта величина не учитывает стрессовые ситуации, болезни, интенсивные физические нагрузки. В связи с этим в нашей стране установлена оптимальная потребность взрослого человека в белке 90—100 г/сутки. При этом в пищевом рационе за счет белка должно обеспечиваться в среднем 11—13 % общей его энергетической ценности, а в процентном отношении белок животного происхождения должен составлять не менее 55 %.

Американскими и шведскими учеными установлены ультраминимальные нормы потребления белков на основании эндогенного распада тканевых белков при безбелковых диетах: 20—25 г/сутки. Однако такие нормы при постоянном использовании не удовлетворяют потребности организма человека и не обеспечивают нормальной работоспособности, так как при распаде тканевых белков образующиеся аминокислоты, используемые в дальнейшем для ресинтеза белка, не могут обеспечить должную замену животного белка, поступающего с пищей, и это приводит к отрицательному азотистому балансу.

Энергетическая потребность людей первой группы интенсивности труда (группа умственного труда) составляет 2500 ккал. 13 % от этой величины составляет 325 ккал. Таким образом, потребность в белке у студентов составляет приблизительно 80 г (325 ккал: 4 ккал = 81,25 г) белка.

У детей потребность в белках определяется возрастными нормами. Количество белка из-за преобладания в организме пластических процессов на 1 кг массы тела увеличено. В среднем эта величина составляет 4 г/кг у детей от 1 до 3 лет жизни, 3,5 —4 г/кг для детей 3—7 лет, 3 г/кг – для детей 8—10 лет и детей старше 11 лет – 2,5—2 г/кг, в то время как в среднем у взрослых 1,2—1,5 г/кг в сутки.

Видео (кликните для воспроизведения).

Источники:

  1. Здоровое питание без жиров. — М.: Росмэн, 1998. — 256 c.
  2. Брунгардт, К. Бодибилдинг. Тренировка мышц живота / К. Брунгардт. — М.: Астрель, Кладезь, АСТ, 2008. — 256 c.
Заменимые и незаменимые аминокислоты биохимия
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here